BOLT BEARING AT SUPPORT AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 3.69 in.
Lcesupp at Support edge = 14.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 3.69 * (0.32/1) * 65.00 = 67.95 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.49 * (0.32/1) * 65.00 = 267.09 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(67.95, 267.09, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing = 3.69 in.
Lceang1 at Angle 1 edge = 0.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 3.69 * 0.31 * 65.00 = 67.52 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.84 * 0.31 * 65.00 = 15.45 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(67.52, 15.45, 27.47) = 15.45 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 15.45) = 15.45 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 3.69 in.
Lcesupp at Support edge = 9.99 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 3.69 * (0.32/1) * 65.00 = 67.95 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 9.99 * (0.32/1) * 65.00 = 184.16 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(67.95, 184.16, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing = 3.69 in.
Lceang1 at Angle 1 edge = 5.34 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 3.69 * 0.31 * 65.00 = 67.52 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 5.34 * 0.31 * 65.00 = 97.85 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(67.52, 97.85, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 3.69 in.
Lcesupp at Support edge = 5.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 3.69 * (0.32/1) * 65.00 = 67.95 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.49 * (0.32/1) * 65.00 = 101.24 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(67.95, 101.24, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing = 3.69 in.
Lceang1 at Angle 1 edge = 9.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 3.69 * 0.31 * 65.00 = 67.52 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.84 * 0.31 * 65.00 = 180.25 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(67.52, 180.25, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt
Bearing Capacity at Support and Angle 1 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 15.45 + 17.89 + 17.89 = 51.24 kips
BOLT BEARING AT SUPPORT AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 3.69 in.
Lcesupp at Support edge = 14.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 3.69 * (0.32/1) * 65.00 = 67.95 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.49 * (0.32/1) * 65.00 = 267.09 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(67.95, 267.09, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing = 3.69 in.
Lceang2 at Angle 2 edge = 0.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 3.69 * 0.31 * 65.00 = 67.52 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.84 * 0.31 * 65.00 = 15.45 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(67.52, 15.45, 27.47) = 15.45 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 15.45) = 15.45 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 3.69 in.
Lcesupp at Support edge = 9.99 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 3.69 * (0.32/1) * 65.00 = 67.95 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 9.99 * (0.32/1) * 65.00 = 184.16 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(67.95, 184.16, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing = 3.69 in.
Lceang2 at Angle 2 edge = 5.34 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 3.69 * 0.31 * 65.00 = 67.52 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 5.34 * 0.31 * 65.00 = 97.85 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(67.52, 97.85, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 3.69 in.
Lcesupp at Support edge = 5.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 3.69 * (0.32/1) * 65.00 = 67.95 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.49 * (0.32/1) * 65.00 = 101.24 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(67.95, 101.24, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing = 3.69 in.
Lceang2 at Angle 2 edge = 9.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 3.69 * 0.31 * 65.00 = 67.52 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.84 * 0.31 * 65.00 = 180.25 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(67.52, 180.25, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt
Bearing Capacity at Support and Angle 2 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 15.45 + 17.89 + 17.89 = 51.24 kips
BEARING AT SUPPORT AND ANGLES SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv1 = Sum{ [(Row)i,(Column)i] } / gage1 ratio = 51.24 / 0.50 = 102.47 kips
Bearing Capacity at Vertical Shear Load Only, Rbv2 = Sum{ [(Row)i,(Column)i] } / gage2 ratio = 51.24 / 0.50 = 102.47 kips
Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(102.47, 102.47) = 102.47 kips
102.47 kips >= 36.67 kips (OK) |
Angle1
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (11.50 - (3 * (0.81 + 1/16))) * 0.31 = 2.78 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.78 = 81.25 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (11.50 - 1.25) = 10.25 in.
Net Shear Length = 10.25 - (2.50 * (0.81 + 1/16)) = 8.06 in.
Gross Tension Length = [edge dist.] = 1.94 in.
Net Tension Length = (1.94 - (1.00 + 1/16)/2) = 1.41 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 8.06) + (1.00 * 65.00 * 1.41)) = 95.31 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.41)) = 93.68 kips
Block Shear = 93.68 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 11.50 = 3.60 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 65.00 * 3.60 = 105.29 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 2.62
Zgross = 10.35 in^3
Znet = 10.35 in^3
Sgross = 6.90 in^3
Snet = 6.90 in^3
Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 50.00 * 6.90 / 2.62 = 118.44 kips
Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 10.35 / 2.62 = 192.47 kips
Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 11.50 in.
c = 2.62 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 11.50 * 50.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (11.50/2.62)^2 )^0.5) = 0.34
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi
Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 45.00 * 6.90 / 2.62 = 118.44 kips
Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:
Zgx = 10.35 in^3
Znx = 10.35 in^3
Zgy = 0.28 in^3
Zny = 0.28 in^3
Mrx = vertical reaction * ex = 18.34 * 2.62 = 48.06 kips-in
Mry = axial reaction * ey = 0.00 * 0.35 = 0.00 kips-in
Mcx = (phi) * Zgx * Min(Fy, Fcr) = 0.90 * 10.35 * Min(50.00, 50.00) = 465.69 kips-in
Mcy = (phi) * Zgy * Fy = 0.90 * 0.28 * 50.00 = 12.67 kips-in
Shear Stress on Gross Section = 18.34 / 3.60 = 5.09 ksi
Shear Stress on Net Section = 18.34 / 3.60 = 5.09 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 3.60 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 3.60 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 48.06 / 10.35 = 4.64 ksi
Axial Stress on Net Section due to Moment (shear) = 48.06 / 10.35 = 4.64 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.28 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.28 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 4.64 = 4.64 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 4.64 = 4.64 ksi
Shear Yield Stress Capacity (SYSC) = phi * 0.6 * Fy = 1.00 * 0.60 * 50.00 = 30.00 ksi
Tensile Yield Stress Capacity (TYSC) = phi * Fy = 0.90 * 50.00 = 45.00 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (5.09 / 30.00)^2 + (4.64 / 45.00 )^2 = 0.04 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 65.00 = 29.25 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 65.00 = 48.75 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (5.09 / 29.25)^2 + (4.64 / 48.75 )^2 = 0.04 <= 1.0 (OK)
Angle2
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (11.50 - (3 * (0.81 + 1/16))) * 0.31 = 2.78 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.78 = 81.25 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (11.50 - 1.25) = 10.25 in.
Net Shear Length = 10.25 - (2.50 * (0.81 + 1/16)) = 8.06 in.
Gross Tension Length = [edge dist.] = 1.94 in.
Net Tension Length = (1.94 - (1.00 + 1/16)/2) = 1.41 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 8.06) + (1.00 * 65.00 * 1.41)) = 95.31 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.41)) = 93.68 kips
Block Shear = 93.68 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 11.50 = 3.60 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 65.00 * 3.60 = 105.29 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 2.62
Zgross = 10.35 in^3
Znet = 10.35 in^3
Sgross = 6.90 in^3
Snet = 6.90 in^3
Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 50.00 * 6.90 / 2.62 = 118.44 kips
Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 10.35 / 2.62 = 192.47 kips
Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 11.50 in.
c = 2.62 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 11.50 * 50.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (11.50/2.62)^2 )^0.5) = 0.34
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi
Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 45.00 * 6.90 / 2.62 = 118.44 kips
Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:
Zgx = 10.35 in^3
Znx = 10.35 in^3
Zgy = 0.28 in^3
Zny = 0.28 in^3
Mrx = vertical reaction * ex = 18.34 * 2.62 = 48.06 kips-in
Mry = axial reaction * ey = 0.00 * 0.35 = 0.00 kips-in
Mcx = (phi) * Zgx * Min(Fy, Fcr) = 0.90 * 10.35 * Min(50.00, 50.00) = 465.69 kips-in
Mcy = (phi) * Zgy * Fy = 0.90 * 0.28 * 50.00 = 12.67 kips-in
Shear Stress on Gross Section = 18.34 / 3.60 = 5.09 ksi
Shear Stress on Net Section = 18.34 / 3.60 = 5.09 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 3.60 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 3.60 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 48.06 / 10.35 = 4.64 ksi
Axial Stress on Net Section due to Moment (shear) = 48.06 / 10.35 = 4.64 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.28 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.28 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 4.64 = 4.64 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 4.64 = 4.64 ksi
Shear Yield Stress Capacity (SYSC) = phi * 0.6 * Fy = 1.00 * 0.60 * 50.00 = 30.00 ksi
Tensile Yield Stress Capacity (TYSC) = phi * Fy = 0.90 * 50.00 = 45.00 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (5.09 / 30.00)^2 + (4.64 / 45.00 )^2 = 0.04 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 65.00 = 29.25 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 65.00 = 48.75 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (5.09 / 29.25)^2 + (4.64 / 48.75 )^2 = 0.04 <= 1.0 (OK)
Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(215.97 , 215.97) = 215.97 kips
215.97 kips >= Reaction V = 36.67 kips (OK)
Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(162.51 , 162.51) = 162.51 kips
162.51 kips >= Reaction V = 36.67 kips (OK)
Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(187.37 , 187.37) = 187.37 kips
187.37 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(215.97 , 215.97) = 215.97 kips
215.97 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(210.58 , 210.58) = 210.58 kips
210.58 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Flexure Yielding Capacity = min (FlexureYieldAngle1/Gage1 Ratio , FlexureYieldAngle2/Gage2 Ratio) = min(236.88 , 236.88) = 236.88 kips
236.88 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Flexure Rupture Capacity = min (FlexureRuptureAngle1/Gage1 Ratio , FlexureRuptureAngle2/Gage2 Ratio) = min(384.94 , 384.94) = 384.94 kips
384.94 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Bending Buckling Capacity = min (BendingBucklingAngle1/Gage1 Ratio , BendingBucklingAngle2/Gage2 Ratio) = min(236.88 , 236.88) = 236.88 kips
236.88 kips >= Reaction V = 36.67 kips (OK) |
Angles Welded to Beam:
Angle1 Beam Weld
k = 0.22
ex = 2.62
a = ex / l = 2.62 / 11.50 = 0.23
Loadangle = 0.00 deg
Weld Coefficient = 0.60 * Fexx * cphi * arrangement coefficient = 2.65
Dmax1 using min(eqn 9-2, tang - 0.06)
= min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06)
= min(0.31 * 65.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06)
= min(6.58, 4.01)
= 4.01
Dmax2 (using eqn 9-3)
= twbeam * Fubeam / ( Fexx * C1 * 0.09 )
= 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 )
= 3.99
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 3.99, 12.00)
= 3.99
Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16
Weld Strength = phi * weld coefficient * l * D = 0.75 * 2.65 * 11.50 * 3.99 = 91.10 kips
Angle2 Beam Weld
k = 0.22
ex = 2.62
a = ex / l = 2.62 / 11.50 = 0.23
Loadangle = 0.00 deg
Weld Coefficient = 0.60 * Fexx * cphi * arrangement coefficient = 2.65
Dmax1 using min(eqn 9-2, tang - 0.06)
= min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06)
= min(0.31 * 65.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06)
= min(6.58, 4.01)
= 4.01
Dmax2 (using eqn 9-3)
= twbeam * Fubeam / ( Fexx * C1 * 0.09 )
= 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 )
= 3.99
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 3.99, 12.00)
= 3.99
Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16
Weld Strength = phi * weld coefficient * l * D = 0.75 * 2.65 * 11.50 * 3.99 = 91.10 kips
Total Welds Shear Strength = min( Angle1 Weld Shear/Gage Ratio at Angle1 , Angle2 Weld Shear/Gage Ratio at Angle2 ) = min ( 182.20, 182.20) = 182.20 kips |