Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bb.2wb.s.00007.00009
 
Main Calcs:
DOUBLE ANGLES Welded to Beam, Bolted to Support CONNECTION SUMMARY

NOTE: DESIGNED WITH MEMBERS CHOSEN ON ONLY ONE SIDE OF SUPPORT

Girder profile: W18X40
Filler Beam profile: W21X50
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: 0.00
Horizontal Offset: 0.00
Span: 45.00 ft.
Reaction, V: 36.67 kips
Shear Capacity, Rn: 172.84 kips
Design/Reference according to AISC 14th Ed. - LRFD
Beam material grade: A992
Support material grade: A992
Angle material grade: A529-GR.50
Angle1 Profile: L5X3X5/16
       Length = 14.50 in.
       Support side bolts: 5 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3.00 in.
Angle2 Profile: L5X3X5/16
       Length = 14.50 in.
       Support side bolts: 5 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3.00 in.

Configuration Geometry:
Weld Size at Angle 1 Beam Weld:
4/16 FILLET - 3 sides
Weld Size at Angle 2 Beam Weld:
4/16 FILLET - 3 sides

Beam setback = 0.50 in.
Top cope depth: 1.25 in.
Top cope length: 3.00 in.
Bottom cope depth: 4.00 in.
Bottom cope length: 3.00 in.


Welded Angle Leg At Beam : 
Angle 1 Leg Edge Distances : 
   Distance from top of Angle to top flange of beam : 1.75 in.
   Distance from bottom of Angle to bottom flange of beam : 4.55 in.

Angle 2 Leg Edge Distances : 
   Distance from top of Angle to top flange of beam : 1.75 in.
   Distance from bottom of Angle to bottom flange of beam : 4.55 in.

Bolted Angle Leg At Support : 
Angle 1 Leg Distances : 
   Down distance from top of filler beam flange : 3.00 in.
   Gage at Bolt : 3.25 in.
   Edge distance at vertical edge : 1.94 in.
   Edge distance at top edge : 1.25 in.
   Edge distance at bottom edge : 1.25 in.

Angle 2 Leg Distances : 
   Down distance from top of filler beam flange : 3.00 in.
   Gage at Bolt : 3.25 in.
   Edge distance at vertical edge : 1.94 in.
   Edge distance at top edge : 1.25 in.
   Edge distance at bottom edge : 1.25 in.

Holes in Support Girder : STD diameter = 0.81 in.
Holes in Support Angle Leg : SSL slot width = 0.81 in., slot length = 1.00 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT SUPPORT AND ANGLE 1 SIDE:
Bolt Shear Capacity at Shear Load Only:
Gage ratio:  gage1 ratio = gage2 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.50
Required tension stress (frt) = gage1 ratio * axial reaction    / bolt row count / bolt area  = 0.50 * 0.00 / 5 / 0.44 = 0.00 ksi
Required shear stress   (frv) = gage1 ratio * vertical reaction / bolt row count  / bolt area  = 0.50 * 36.67 / 5 / 0.44 = 8.30 ksi
C = no of bolts = 5.00
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 17.89 * 5.00 = 89.46 kips


BOLT SHEAR CAPACITY AT SUPPORT AND ANGLE 2 SIDE:
Bolt Shear Capacity at Shear Load Only:
Gage ratio:  gage2 ratio = gage1 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.50
Required tension stress (frt) = gage2 ratio * axial reaction    / bolt row count / bolt area  = 0.50 * 0.00 / 5 / 0.44 = 0.00 ksi
Required shear stress   (frv) = gage2 ratio * vertical reaction / bolt row count  / bolt area  = 0.50 * 36.67 / 5 / 0.44 = 8.30 ksi
C = no of bolts = 5.00
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 17.89 * 5.00 = 89.46 kips


Vertical Bolt Shear Capacity at Support and Angle 1 = 
 = Shear Load Only Angle 1 side/gage1 ratio = 89.46/0.50 = 178.93 kips
Vertical Bolt Shear Capacity at Support and Angle 2 = 
 = Shear Load Only Angle 2 side/gage2 ratio = 89.46/0.50 = 178.93 kips
Total Support Side Bolt Shear Capacity = min(178.93, 178.93) = 178.93 kips
178.93 kips >= Reaction V = 36.67 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT SUPPORT AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 14.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.49 * (0.32/1) * 65.00 = 267.09 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 267.09, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 0.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.84 * 0.31 * 65.00 = 15.45 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 15.45, 27.47) = 15.45 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 15.45) = 15.45 kips/bolt

At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 11.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 11.49 * (0.32/1) * 65.00 = 211.81 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 211.81, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 3.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.84 * 0.31 * 65.00 = 70.38 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 70.38, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt

At Row 3, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 8.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 8.49 * (0.32/1) * 65.00 = 156.52 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 156.52, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 6.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.84 * 0.31 * 65.00 = 125.32 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 125.32, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt

At Row 4, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 5.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.49 * (0.32/1) * 65.00 = 101.24 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 101.24, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 9.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.84 * 0.31 * 65.00 = 180.25 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 180.25, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt

At Row 5, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 2.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.49 * (0.32/1) * 65.00 = 45.95 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 45.95, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 12.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 12.84 * 0.31 * 65.00 = 235.18 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 235.18, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt

Bearing Capacity at Support and Angle 1 for vertical shear only
 = Sum{ Bearing At [(Row)i,(Column)i] }
 = 15.45 + 17.89 + 17.89 + 17.89 + 17.89 = 87.02 kips

BOLT BEARING AT SUPPORT AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 14.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.49 * (0.32/1) * 65.00 = 267.09 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 267.09, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 0.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.84 * 0.31 * 65.00 = 15.45 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 15.45, 27.47) = 15.45 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 15.45) = 15.45 kips/bolt

At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 11.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 11.49 * (0.32/1) * 65.00 = 211.81 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 211.81, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 3.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.84 * 0.31 * 65.00 = 70.38 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 70.38, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt

At Row 3, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 8.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 8.49 * (0.32/1) * 65.00 = 156.52 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 156.52, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 6.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.84 * 0.31 * 65.00 = 125.32 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 125.32, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt

At Row 4, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 5.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.49 * (0.32/1) * 65.00 = 101.24 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 101.24, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 9.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.84 * 0.31 * 65.00 = 180.25 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 180.25, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt

At Row 5, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 2.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.19 * (0.32/1) * 65.00 = 40.31 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.49 * (0.32/1) * 65.00 = 45.95 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter   = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(40.31, 45.95, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 12.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 12.84 * 0.31 * 65.00 = 235.18 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 235.18, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 27.47) = 17.89 kips/bolt

Bearing Capacity at Support and Angle 2 for vertical shear only
 = Sum{ Bearing At [(Row)i,(Column)i] }
 = 15.45 + 17.89 + 17.89 + 17.89 + 17.89 = 87.02 kips

BEARING AT SUPPORT AND ANGLES SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv1 = Sum{ [(Row)i,(Column)i] } / gage1 ratio = 87.02 / 0.50 = 174.04 kips
Bearing Capacity at Vertical Shear Load Only, Rbv2 = Sum{ [(Row)i,(Column)i] } / gage2 ratio = 87.02 / 0.50 = 174.04 kips
Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(174.04, 174.04) = 174.04 kips
174.04 kips >= 36.67 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 20.80 - 1.25 - 4.00 = 15.55 in.

Using AISC 14th Ed. Equation J4-3
Gross Area (Shear), Ag = [Gross Shear Length] * tw = 15.55 * 0.38 = 5.91 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fybeam * Ag = 1.00 * 0.6 * 50.00 * 5.91 = 177.27 kips

Using AISC 14th Ed. Equation J4-4
Net Area (Shear), Anet = [Gross Shear Length] * tw = 15.55 * 0.38 = 5.91 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fubeam * Anet = 0.75 * 0.6 * 65.00 * 5.91 = 172.84 kips


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear (1)
Gross Shear Length = [dist. bottom most weld line to top edge of beam cope] = 15.00 in.
Net Shear Length = 15.00 in.
Gross Tension Length = [horizontal weld length] = 2.50 in.
Net Tension Length = 2.50 in.
1. (phi) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 65.00 * 15.00) + (1.00 * 65.00 * 2.50)) = 213.04 kips
2. (phi) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 50.00 * 15.00) + (1.00 * 65.00 * 2.50)) = 174.57 kips
Block Shear = 174.57 kips
174.57 kips >= Reaction V = 36.67 kips (OK)

Block Shear for Axial T/C is not required.

Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section)
Eccentricity at Section, e = 3.66 in.
If beam is coped at both top and bottom flanges,

Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.38 in.
ho = 15.55 in.
c = 3.00 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 15.55 * 50.00^0.5 / (10 * 0.38 * (475.00 + 280.00 * (15.55/3.00)^2 )^0.5) = 0.32
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi
Snet1 (bolt holes not applicable) = 15.31 in^3
Snet2 (bolt holes applicable) = 15.31 in^3
Znet1 (bolt holes not applicable) = 22.97 in^3
Znet2 (bolt holes applicable) = 22.97 in^3

Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Snet1 / e = 45.00 * 15.31 / 3.66 = 188.42 kips

Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Snet1 / e = 0.90 * 50.00 * 15.31 / 3.66 = 188.42 kips

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet2 / e = 0.75 * 65.00 * 22.97 / 3.66 = 306.19 kips


Section Bending Strength Calculations Summary:

   Coped Beam Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section)
   Buckling : 188.42 >= 36.67 kips (OK)
   Flexural Yielding : 188.42 >= 36.67 kips (OK)
   Flexural Rupture : 306.19 >= 36.67 kips (OK)
Double Angles Welded Bolted Calcs:
Angle1 

Support Angle Leg 


Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 14.50 = 4.54 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 4.54 = 136.16 kips

Using AISC 14th Ed. Equation J4-4
Net Area, An = (14.50 - (5 * (0.81 + 1/16))) * 0.31 = 3.17 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 3.17 = 92.70 kips


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block 1 (Shear): 
Gross Shear Length = (14.50 - 1.25) = 13.25 in.
Net Shear Length = 13.25 - (4.50 * (0.81 + 1/16)) = 9.31 in.
Gross Tension Length = [edge dist.] = 1.94 in.
Net Tension Length = (1.94 - (1.00 + 1/16)/2) = 1.41 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.75 * 0.31 * ((0.60 * 65.00 * 9.31) + (1.00 * 65.00 * 1.41)) = 106.76 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.75 * 0.31 * ((0.60 * 50.00 * 13.25) + (1.00 * 65.00 * 1.41)) = 114.81 kips
Block Shear = 106.76 kips

Beam Angle Leg 


Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 14.50 = 4.54 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 50.00 * 4.54 = 136.16 kips

Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 14.50 = 4.54 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 65.00 * 4.54 = 132.75 kips


Flexural and Buckling Strength:

Eccentricity at Weld = 2.68
Zgross = 16.45 in^3
Znet   = 16.45 in^3
Sgross = 10.97 in^3
Snet   = 10.97 in^3

Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 50.00 * 10.97 / 2.68 = 184.20 kips

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 16.45 / 2.68 = 299.33 kips


Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 14.50 in.
c = 2.68 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 14.50 * 50.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (14.50/2.68)^2 )^0.5) = 0.35
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi

Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 45.00 * 10.97 / 2.68 = 184.20 kips

Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:

Zgx = 16.45 in^3
Znx = 16.45 in^3
Zgy = 0.36 in^3
Zny = 0.36 in^3

Mrx = vertical reaction * ex = 18.33 * 2.68 = 49.12 kips-in
Mry = axial reaction * ey = 0.00 * 0.35 = 0.00 kips-in
Mcx = (phi) * Zgx * Min(Fy, Fcr) = 0.90 * 16.45 * Min(50.00, 50.00) = 740.34 kips-in
Mcy = (phi) * Zgy * Fy = 0.90 * 0.36 * 50.00 = 15.98 kips-in
Shear Stress on Gross Section = 18.33 / 4.54 = 4.04 ksi
Shear Stress on Net Section = 18.33 / 4.54 = 4.04 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 4.54 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 4.54 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 49.12 / 16.45 = 2.99 ksi
Axial Stress on Net Section due to Moment (shear) = 49.12 / 16.45 = 2.99 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.36 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.36 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 2.99 = 2.99 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 2.99 = 2.99 ksi

Shear Yield Stress Capacity (SYSC) = phi * 0.6 * Fy = 1.00 * 0.60 * 50.00 = 30.00 ksi
Tensile Yield Stress Capacity (TYSC) = phi * Fy = 0.90 * 50.00 = 45.00 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (4.04 / 30.00)^2 + (2.99 / 45.00 )^2 = 0.02 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 65.00 = 29.25 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 65.00 = 48.75 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (4.04 / 29.25)^2 + (2.99 / 48.75 )^2 = 0.02 <= 1.0 (OK)


Angle2 

Support Angle Leg 


Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 14.50 = 4.54 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 4.54 = 136.16 kips

Using AISC 14th Ed. Equation J4-4
Net Area, An = (14.50 - (5 * (0.81 + 1/16))) * 0.31 = 3.17 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 3.17 = 92.70 kips


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block 1 (Shear): 
Gross Shear Length = (14.50 - 1.25) = 13.25 in.
Net Shear Length = 13.25 - (4.50 * (0.81 + 1/16)) = 9.31 in.
Gross Tension Length = [edge dist.] = 1.94 in.
Net Tension Length = (1.94 - (1.00 + 1/16)/2) = 1.41 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.75 * 0.31 * ((0.60 * 65.00 * 9.31) + (1.00 * 65.00 * 1.41)) = 106.76 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.75 * 0.31 * ((0.60 * 50.00 * 13.25) + (1.00 * 65.00 * 1.41)) = 114.81 kips
Block Shear = 106.76 kips

Beam Angle Leg 


Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 14.50 = 4.54 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 50.00 * 4.54 = 136.16 kips

Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 14.50 = 4.54 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 65.00 * 4.54 = 132.75 kips


Flexural and Buckling Strength:

Eccentricity at Weld = 2.68
Zgross = 16.45 in^3
Znet   = 16.45 in^3
Sgross = 10.97 in^3
Snet   = 10.97 in^3

Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 50.00 * 10.97 / 2.68 = 184.20 kips

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 16.45 / 2.68 = 299.33 kips


Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 14.50 in.
c = 2.68 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 14.50 * 50.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (14.50/2.68)^2 )^0.5) = 0.35
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi

Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 45.00 * 10.97 / 2.68 = 184.20 kips

Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:

Zgx = 16.45 in^3
Znx = 16.45 in^3
Zgy = 0.36 in^3
Zny = 0.36 in^3

Mrx = vertical reaction * ex = 18.33 * 2.68 = 49.12 kips-in
Mry = axial reaction * ey = 0.00 * 0.35 = 0.00 kips-in
Mcx = (phi) * Zgx * Min(Fy, Fcr) = 0.90 * 16.45 * Min(50.00, 50.00) = 740.34 kips-in
Mcy = (phi) * Zgy * Fy = 0.90 * 0.36 * 50.00 = 15.98 kips-in
Shear Stress on Gross Section = 18.33 / 4.54 = 4.04 ksi
Shear Stress on Net Section = 18.33 / 4.54 = 4.04 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 4.54 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 4.54 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 49.12 / 16.45 = 2.99 ksi
Axial Stress on Net Section due to Moment (shear) = 49.12 / 16.45 = 2.99 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.36 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.36 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 2.99 = 2.99 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 2.99 = 2.99 ksi

Shear Yield Stress Capacity (SYSC) = phi * 0.6 * Fy = 1.00 * 0.60 * 50.00 = 30.00 ksi
Tensile Yield Stress Capacity (TYSC) = phi * Fy = 0.90 * 50.00 = 45.00 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (4.04 / 30.00)^2 + (2.99 / 45.00 )^2 = 0.02 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 65.00 = 29.25 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 65.00 = 48.75 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (4.04 / 29.25)^2 + (2.99 / 48.75 )^2 = 0.02 <= 1.0 (OK)


Total Support Side Shear Yielding Capacity =  min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) =  min(272.31 , 272.31) = 272.31 kips
272.31 kips >= Reaction V = 36.67 kips (OK)
Total Support Side Shear Rupture Capacity =  min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(185.40 , 185.40) = 185.40 kips
185.40 kips >= Reaction V = 36.67 kips (OK)
Total Support Side Vertical Block Shear Capacity =  min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(213.51 , 213.51) = 213.51 kips
213.51 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Shear Yielding Capacity =  min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(272.31 , 272.31) = 272.31 kips
272.31 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Shear Rupture Capacity =  min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(265.51 , 265.51) = 265.51 kips
265.51 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Flexure Yielding Capacity =  min (FlexureYieldAngle1/Gage1 Ratio , FlexureYieldAngle2/Gage2 Ratio) = min(368.40 , 368.40) = 368.40 kips
368.40 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Flexure Rupture Capacity =  min (FlexureRuptureAngle1/Gage1 Ratio , FlexureRuptureAngle2/Gage2 Ratio) = min(598.67 , 598.67) = 598.67 kips
598.67 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Bending Buckling Capacity =  min (BendingBucklingAngle1/Gage1 Ratio , BendingBucklingAngle2/Gage2 Ratio) = min(368.40 , 368.40) = 368.40 kips
368.40 kips >= Reaction V = 36.67 kips (OK)
Weld Calcs:
Angles Welded to Beam:

Angle1 Beam Weld
k = 0.17
ex = 2.68
a = ex / l = 2.68 / 14.50 = 0.18
Loadangle = 0.00 deg 
Weld Coefficient = 0.60 * Fexx * cphi * arrangement coefficient = 2.54
Dmax1 using min(eqn 9-2, tang - 0.06) 
 = min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06) 
 = min(0.31 * 65.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06) 
 = min(6.58, 4.01)
 = 4.01 
Dmax2 (using eqn 9-3)
 = twbeam * Fubeam / ( Fexx * C1 * 0.09 )
 = 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 ) 
 = 3.99 
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 3.99, 12.00)
 = 3.99 

Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16

Weld Strength = phi * weld coefficient * l * D  = 0.75 * 2.54 * 14.50 * 3.99 = 110.20 kips

Angle2 Beam Weld
k = 0.17
ex = 2.68
a = ex / l = 2.68 / 14.50 = 0.18
Loadangle = 0.00 deg 
Weld Coefficient = 0.60 * Fexx * cphi * arrangement coefficient = 2.54
Dmax1 using min(eqn 9-2, tang - 0.06) 
 = min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06) 
 = min(0.31 * 65.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06) 
 = min(6.58, 4.01)
 = 4.01 
Dmax2 (using eqn 9-3)
 = twbeam * Fubeam / ( Fexx * C1 * 0.09 )
 = 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 ) 
 = 3.99 
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 3.99, 12.00)
 = 3.99 

Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16

Weld Strength = phi * weld coefficient * l * D  = 0.75 * 2.54 * 14.50 * 3.99 = 110.20 kips

Total Welds Shear Strength = min( Angle1 Weld Shear/Gage Ratio at Angle1 , Angle2 Weld Shear/Gage Ratio at Angle2 ) = min ( 220.40, 220.40) = 220.40 kips