Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bcw.s.s.02123.02123
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

NOTE: DESIGNED WITH MEMBERS CHOSEN ON ONLY ONE SIDE OF SUPPORT

Filler Beam profile: W21X44
Column profile: W14X90
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: 0.00
Horizontal Offset: 0.00
Span: 26.98 ft.
Reaction, V: 38.00 kips
Shear Capacity, Rn: 45.75 kips
Design/Reference according to AISC 14th Ed. - LRFD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Stabilizer plate grade: A572-GR.50
Shear Plate Size: 10.62 in. x 17.50 in. x 0.38 in.
Shear Plate Detailing Height at Support: 17.50 in.
Shear Plate Detailing Width at Support: 7.00 in.
Stabilizer plate size: 12.50 in. x 7.00 in. x 0.50 in.
(Required due to user requirement)
Configuration Geometry:
Welds at shear plate to support: 4/16 FILLET, 4/16 FILLET
Welds at stabilizer plate :
at column flange: 4/16 FILLET, 4/16 FILLET
at column web: 4/16 FILLET, 4/16 FILLET
at shear plate: 4/16 FILLET, 4/16 FILLET
Bolt: 6 rows x 1 column 0.75 in. Diameter A325N_TC bolts
Vertical spacing: 3.00 in.
Horizontal spacing: 3.00 in.
Shear plate edge setback = 7.62 in.
Beam centerline setback = 7.62 in.
Edge distance at vertical edge of plate: 1.50 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.50 in.
Horizontal distance to first hole: 9.12 in.
Down distance from top of filler beam flange: 3.00 in.
Holes in beam web: STD diameter = 0.81 in.
Holes in shear plate: SSL diameter = 0.81 in., slot width = 1.00 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND SHEAR PLATE SIDE:
Bolt Shear Capacity at Shear Load Only:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 9.12 in.
Angle = 0.00 deg.
C = 2.56
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 17.89 * 2.56 = 45.75 kips


Total Vertical Bolt Shear Capacity = 45.75 kips
45.75 kips >= Reaction V = 38.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (2.01, -0.00)
At Row 1, At Column 1:
Ribolt = 17.56 kips
Ri vector at Beam   = <16.96, 4.56>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 11.16 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 11.16 * (0.35/1) * 65.00 = 228.50 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.35/1) * 65.00 = 30.71 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 228.50, 30.71) = 30.71 kips/bolt
Ri vector at Shear Plate   = <-16.96, -4.56>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 8.93 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 8.93 * 0.38 * 65.00 = 195.92 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 195.92, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(30.71, 32.91) = 30.71 kips/bolt
Bolt Shear Demand to Bearing ratio = 30.71 / 17.56 = 1.75

At Row 2, At Column 1:
Ribolt = 16.73 kips
Ri vector at Beam   = <15.27, 6.83>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 14.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 14.28 * (0.35/1) * 65.00 = 292.39 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.35/1) * 65.00 = 30.71 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 292.39, 30.71) = 30.71 kips/bolt
Ri vector at Shear Plate   = <-15.27, -6.83>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 9.45 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.45 * 0.38 * 65.00 = 207.31 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 207.31, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(30.71, 32.91) = 30.71 kips/bolt
Bolt Shear Demand to Bearing ratio = 30.71 / 16.73 = 1.84

At Row 3, At Column 1:
Ribolt = 14.32 kips
Ri vector at Beam   = <8.55, 11.48>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 10.82 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 10.82 * (0.35/1) * 65.00 = 221.47 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.35/1) * 65.00 = 30.71 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 221.47, 30.71) = 30.71 kips/bolt
Ri vector at Shear Plate   = <-8.55, -11.48>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 12.27 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 12.27 * 0.38 * 65.00 = 269.28 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 269.28, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(30.71, 32.91) = 30.71 kips/bolt
Bolt Shear Demand to Bearing ratio = 30.71 / 14.32 = 2.14

At Row 4, At Column 1:
Ribolt = 14.32 kips
Ri vector at Beam   = <-8.55, 11.49>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 2.11 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.11 * (0.35/1) * 65.00 = 43.12 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.35/1) * 65.00 = 30.71 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 43.12, 30.71) = 30.71 kips/bolt
Ri vector at Shear Plate   = <8.55, -11.49>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 2.01 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 2.01 * 0.38 * 65.00 = 44.00 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 44.00, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(30.71, 32.91) = 30.71 kips/bolt
Bolt Shear Demand to Bearing ratio = 30.71 / 14.32 = 2.14

At Row 5, At Column 1:
Ribolt = 16.72 kips
Ri vector at Beam   = <-15.26, 6.83>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 1.24 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.24 * (0.35/1) * 65.00 = 25.33 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.35/1) * 65.00 = 30.71 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 25.33, 30.71) = 25.33 kips/bolt
Ri vector at Shear Plate   = <15.26, -6.83>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 1.10 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 1.10 * 0.38 * 65.00 = 24.04 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 24.04, 32.91) = 24.04 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(25.33, 24.04) = 24.04 kips/bolt
Bolt Shear Demand to Bearing ratio = 24.04 / 16.72 = 1.44

At Row 6, At Column 1:
Ribolt = 17.56 kips
Ri vector at Beam   = <-16.96, 4.56>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 1.15 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.15 * (0.35/1) * 65.00 = 23.48 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.35/1) * 65.00 = 30.71 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 23.48, 30.71) = 23.48 kips/bolt
Ri vector at Shear Plate   = <16.96, -4.56>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 1.04 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 1.04 * 0.38 * 65.00 = 22.72 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 22.72, 32.91) = 22.72 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(23.48, 22.72) = 22.72 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.72 / 17.56 = 1.29

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
 = min(1.00, 1.75, 1.84, 2.14, 2.14, 1.44, 1.29) = 1.00

BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 45.75 = 45.75 kips
Rbv = 45.75 kips >= Reaction V = 38.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 20.70 - 0.00 - 0.00 = 20.70 in.

Using AISC 14th Ed. Equation J4-3
Gross Area (Shear), Agross = [Web Depth] * tw = 20.70 * 0.35 = 7.24 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fybeam * Agross = 1.00 * 0.6 * 50.00 * 7.24 = 217.35 kips

Using AISC 14th Ed. Equation J4-4
Net Area (Shear), Anet = ([Web Depth] - ([# rows] * [Diameter + 0.06])) * tw 
    = (20.70 - (6 * 0.88)) * 0.35 = 5.41 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fubeam * Anet = 0.75 * 0.6 * 65.00 * 5.41 = 158.17 kips


Check Horizontal Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear for Axial T/C is not required.
Shear Plate Calcs:
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 17.50 = 6.56 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fypl * Ag = 1.00 * 0.6 * 50.00 * 6.56 = 196.88 kips

196.88 kips >= Reaction V = 38.00 kips (OK)

Using AISC 14th Ed. Equation J4-4
Net Area, An = (17.50 - (6 * (0.81 + 1/16))) * 0.38 = 4.59 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fupl * An = 0.75 * 0.6 * 65.00 * 4.59 = 134.37 kips

134.37 kips >= Reaction V = 38.00 kips (OK)


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block 1 (Shear): 
Gross Shear Length = (17.50 - 1.25) = 16.25 in.
Net Shear Length = 16.25 - (5.50 * (0.81 + 0.06)) = 11.44 in.
Gross Tension Length = (0.00 + 1.50) = 1.50 in.
Net Tension Length = 1.50 - (0.50 * (1.00 + 0.06)) = 0.97 in.
1. (phi) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 65.00 * 11.44) + (1.00 * 65.00 * 0.97)) = 143.17 kips
2. (phi) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 50.00 * 16.25) + (1.00 * 65.00 * 0.97)) = 154.82 kips
Block Shear = 143.17 kips
143.17 kips >= Reaction V = 38.00 kips (OK)

Block Shear for Axial T/C is not required.

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.12 in.
Zgross = 28.71 in^3
Znet   = 19.85 in^3
Sgross = 19.14 in^3
Snet   = 13.23 in^3

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 19.85 / 9.12 = 106.06 kips


Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.38 in.
ho = 17.50 in.
c = 9.12 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 17.50 * 50.00^0.5 / (10 * 0.38 * (475.00 + 280.00 * (17.50/9.12)^2 )^0.5) = 0.85
When 0.70 < lambda <= 1.41, Q=1.34 - 0.49 * lambda
Q = 0.93
Fcrmin =phi * Fcr = 0.90 * 50.00 * 0.93 = 41.70 ksi

Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 41.70 * 19.14 / 9.12 = 87.46 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 9.12 in.
Zgross = 28.71
Znet = 19.85
Mr = Vr * e = 38.00 * 9.12 = 346.75 kips-in
Mc = phi * Mn = phi * Fy * Zgross = 0.90 * 50.00 * 28.71 = 1291.99 kips-in
Vr = 38.00 kips
Vc = phi * Vn = phi * 0.60 * Fy * Ag = 1.00 * 0.60 * 50.00 * 6.56 = 196.88 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (38.00 / 196.88)^2 + (346.75 / 1291.99)^2 = 0.11 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
No of bolt columns = 1
tp  < = db/2 + 1/16 = 0.38 <= 0.44 OK
tw  < = db/2 + 1/16 = 0.35 <= 0.44 OK
Leh(plate) >= 2 * db = 1.50 >= 1.50 OK
Leh(bm) >= 2 * db = 1.50 >= 1.50 OK
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using AISC 14th Ed. Equation 10-6
phiRn = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.90 * 1500.00 * 3.14159 * 17.50 * 0.38^3 / 9.12^2 = 47.01 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using AISC 14th Ed. Equation 10-8 and 10-7
Required, Mta or Mtu = Ru * (tw + tp) /2 = 38.00 * ((0.38 + 0.38) / 2) = 14.25 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [phiv*(0.6*Fyp)-(Ru/(L*tp))] *L*tp^2/2 =  ((1.00 * 0.6 * 50.00) - (38.00 / (17.50 * 0.38))) * 0.5 * 17.50 * 0.38^2 = 29.79 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 16.50 in.
Shear Load per inch per weld, fv = R/Lv/2 = 38.00 / 16.50 / 2 = 1.15 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.00
Weld Coefficient = 0.60 * 70.00 * 1.00 * 1.00 * (2^0.5/2)*(1/16) = 1.86
Required weld size, Dv = fv/ (phi * coeff) = 1.15 / (0.75 * 1.86) = 0.83/16

Minimum fillet weld size : 
   At shear only load case = 0.05 in.
   per Table J2.4     = 0.19 in.
   5/8tp              = 0.23 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.09)
 = 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 ) 
 = 3.94 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.09 )
 = 0.44 * 65.00 / ( 70.00 * 1.00 * 0.09 ) 
 = 4.62 
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.94, 4.62, 12.00)
 = 3.94 

Use weld size
D1 = 4.00
D2 = 4.00

Weld Strength :

Vertical weld capacity during shear only load, phi * Rnv1 = 0.75 * 1.86 * 16.50 * (3.94 + 3.94) = 180.99 kips

180.99 kips >= Reaction V = 38.00 kips (OK)