Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bcw.s.s.02415.02415
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

NOTE: DESIGNED WITH MEMBERS CHOSEN ON ONLY ONE SIDE OF SUPPORT

Filler Beam profile: W12X14
Column profile: W14X176
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: 0.00 in.
Horizontal Offset: 0.00 in.
Span: 10.00 ft.
Reaction, V: 20.00 kips
Shear Capacity, Rn: 22.78 kips
Design/Reference according to AISC 14th Ed. - LRFD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Stabilizer plate grade: A572-GR.50
Shear Plate Size: 15.00 in. x 9.00 in. x 0.38 in.
Shear Plate Detailing Height at Support: 9.00 in.
Shear Plate Detailing Width at Support: 7.38 in.
Stabilizer plate size: 12.50 in. x 7.38 in. x 0.50 in.
(Required due to user requirement)
Configuration Geometry:
Welds at shear plate to support: 4/16 FILLET, 4/16 FILLET
Welds at stabilizer plate :
at column flange: 4/16 FILLET, 4/16 FILLET
at column web: 4/16 FILLET, 4/16 FILLET
at shear plate: 4/16 FILLET, 4/16 FILLET
Bolt: 3 rows x 2 columns 1.00 in. Diameter A490N_TC bolts
Vertical spacing: 3.00 in.
Horizontal spacing: 3.00 in.
Shear plate edge setback = 8.00 in.
Beam centerline setback = 8.00 in.
Edge distance at vertical edge of plate: 2.00 in.
Edge distance at top edge of plate: 1.50 in.
Edge distance at bottom edge of plate: 1.50 in.
Edge distance at vertical edge of beam: 2.00 in.
Horizontal distance to first hole: 10.00 in.
Down distance from top of filler beam flange: 3.00 in.
Holes in beam web: STD diameter = 1.06 in.
Holes in shear plate: SSL diameter = 1.06 in., slot width = 1.31 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND SHEAR PLATE SIDE:
Bolt Shear Capacity at Shear Load Only:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 11.50 in.
Angle = 0.00 deg.
C = 1.29
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 40.06 * 1.29 = 51.69 kips


Total Vertical Bolt Shear Capacity = 51.69 kips
51.69 kips >= Reaction V = 20.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (0.98, 0.00)
At Row 1, At Column 1:
Ribolt = 39.32 kips
Ri vector at Beam   = <30.28, 25.08>
Lcsbm at Beam spacing  = 2.76 in.
Lcebm at Beam edge    = 4.17 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.76 * (0.20/1) * 65.00 = 32.32 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.17 * (0.20/1) * 65.00 = 48.81 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 1.00 * (0.20/1) * 65.00 = 23.40 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(32.32, 48.81, 23.40) = 23.40 kips/bolt
Ri vector at Shear Plate   = <-30.28, -25.08>
Lcsshpl at Shear Plate spacing  = 2.67 in.
Lceshpl at Shear Plate edge    = 10.92 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.67 * 0.38 * 65.00 = 58.67 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 10.92 * 0.38 * 65.00 = 239.66 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.38 * 65.00 = 43.88 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(58.67, 239.66, 43.88) = 43.88 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(23.40, 43.88) = 23.40 kips/bolt
Bolt Shear Demand to Bearing ratio = 23.40 / 39.32 = 0.60

At Row 1, At Column 2:
Ribolt = 38.48 kips
Ri vector at Beam   = <37.93, -6.51>
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 52.06 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.94 * (0.20/1) * 65.00 = 22.67 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 52.06 * (0.20/1) * 65.00 = 609.08 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 1.00 * (0.20/1) * 65.00 = 23.40 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(22.67, 609.08, 23.40) = 22.67 kips/bolt
Ri vector at Shear Plate   = <-37.93, 6.51>
Lcsshpl at Shear Plate spacing  = 1.69 in.
Lceshpl at Shear Plate edge    = 8.20 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.69 * 0.38 * 65.00 = 37.02 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 8.20 * 0.38 * 65.00 = 179.83 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.38 * 65.00 = 43.88 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(37.02, 179.83, 43.88) = 37.02 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(22.67, 37.02) = 22.67 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.67 / 38.48 = 0.59

At Row 2, At Column 1:
Ribolt = 37.47 kips
Ri vector at Beam   = <-0.00, 37.47>
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 5.47 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.94 * (0.20/1) * 65.00 = 22.67 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.47 * (0.20/1) * 65.00 = 63.99 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 1.00 * (0.20/1) * 65.00 = 23.40 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(22.67, 63.99, 23.40) = 22.67 kips/bolt
Ri vector at Shear Plate   = <0.00, -37.47>
Lcsshpl at Shear Plate spacing  = 1.94 in.
Lceshpl at Shear Plate edge    = 3.97 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.38 * 65.00 = 42.50 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.97 * 0.38 * 65.00 = 87.07 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.38 * 65.00 = 43.88 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(42.50, 87.07, 43.88) = 42.50 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(22.67, 42.50) = 22.67 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.67 / 37.47 = 0.61

At Row 2, At Column 2:
Ribolt = 22.91 kips
Ri vector at Beam   = <-0.01, -22.91>
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 5.37 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.94 * (0.20/1) * 65.00 = 22.67 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.37 * (0.20/1) * 65.00 = 62.82 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 1.00 * (0.20/1) * 65.00 = 23.40 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(22.67, 62.82, 23.40) = 22.67 kips/bolt
Ri vector at Shear Plate   = <0.01, 22.91>
Lcsshpl at Shear Plate spacing  = 1.94 in.
Lceshpl at Shear Plate edge    = 3.97 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.38 * 65.00 = 42.50 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.97 * 0.38 * 65.00 = 87.07 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.38 * 65.00 = 43.88 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(42.50, 87.07, 43.88) = 42.50 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(22.67, 42.50) = 22.67 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.67 / 22.91 = 0.99

At Row 3, At Column 1:
Ribolt = 39.32 kips
Ri vector at Beam   = <-30.28, 25.08>
Lcsbm at Beam spacing  = 2.76 in.
Lcebm at Beam edge    = 2.07 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.76 * (0.20/1) * 65.00 = 32.32 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.07 * (0.20/1) * 65.00 = 24.17 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 1.00 * (0.20/1) * 65.00 = 23.40 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(32.32, 24.17, 23.40) = 23.40 kips/bolt
Ri vector at Shear Plate   = <30.28, -25.08>
Lcsshpl at Shear Plate spacing  = 2.67 in.
Lceshpl at Shear Plate edge    = 1.52 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.67 * 0.38 * 65.00 = 58.67 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 1.52 * 0.38 * 65.00 = 33.32 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.38 * 65.00 = 43.88 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(58.67, 33.32, 43.88) = 33.32 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(23.40, 33.32) = 23.40 kips/bolt
Bolt Shear Demand to Bearing ratio = 23.40 / 39.32 = 0.60

At Row 3, At Column 2:
Ribolt = 38.49 kips
Ri vector at Beam   = <-37.93, -6.51>
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 4.54 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.94 * (0.20/1) * 65.00 = 22.67 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.54 * (0.20/1) * 65.00 = 53.14 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 1.00 * (0.20/1) * 65.00 = 23.40 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(22.67, 53.14, 23.40) = 22.67 kips/bolt
Ri vector at Shear Plate   = <37.93, 6.51>
Lcsshpl at Shear Plate spacing  = 1.69 in.
Lceshpl at Shear Plate edge    = 1.36 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.69 * 0.38 * 65.00 = 37.02 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 1.36 * 0.38 * 65.00 = 29.91 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.38 * 65.00 = 43.88 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(37.02, 29.91, 43.88) = 29.91 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(22.67, 29.91) = 22.67 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.67 / 38.49 = 0.59

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
 = min(1.00, 0.60, 0.59, 0.61, 0.99, 0.60, 0.59) = 0.59

BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 0.59 * 51.69 = 30.45 kips
Rbv = 30.45 kips >= Reaction V = 20.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 11.90 - 0.00 - 0.00 = 11.90 in.

Using AISC 14th Ed. Equation J4-3
Gross Area (Shear), Agross = [Web Depth] * tw = 11.90 * 0.20 = 2.38 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fybeam * Agross = 1.00 * 0.6 * 50.00 * 2.38 = 71.40 kips
71.40 kips >= Reaction V = 20.00 kips (OK)

Using AISC 14th Ed. Equation J4-4
Net Area (Shear), Anet = ([Web Depth] - ([# rows] * [Diameter + 0.06])) * tw 
    = (11.90 - (3 * 1.12)) * 0.20 = 1.71 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fubeam * Anet = 0.75 * 0.6 * 65.00 * 1.71 = 49.87 kips
49.87 kips >= Reaction V = 20.00 kips (OK)


Check Horizontal Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear for Axial T/C is not required.
Shear Plate Calcs:
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 9.00 = 3.38 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fypl * Ag = 1.00 * 0.6 * 50.00 * 3.38 = 101.25 kips
101.25 kips >= Reaction V = 20.00 kips (OK)

Using AISC 14th Ed. Equation J4-4
Net Area, An = (9.00 - (3 * (1.06 + 1/16))) * 0.38 = 2.11 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fupl * An = 0.75 * 0.6 * 65.00 * 2.11 = 61.70 kips
61.70 kips >= Reaction V = 20.00 kips (OK)


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block 1 (Shear): 
Gross Shear Length = (9.00 - 1.50) = 7.50 in.
Net Shear Length = 7.50 - (2.50 * (1.06 + 0.06)) = 4.69 in.
Gross Tension Length = (3.00 + 2.00) = 5.00 in.
Net Tension Length = 5.00 - (1.50 * (1.31 + 0.06)) = 2.94 in.
1. (phi) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 65.00 * 4.69) + (0.50 * 65.00 * 2.94)) = 78.27 kips
2. (phi) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 50.00 * 7.50) + (0.50 * 65.00 * 2.94)) = 90.13 kips
Block Shear = 78.27 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (9.00 - 1.50) = 15.00 in.
Net Shear Length = 2 * ( 7.50 - (2.50 * (1.06 + 0.06)) ) = 9.38 in.
Gross Tension Length = (3.00 + 2.00) - 2.00 = 3.00 in.
Net Tension Length = 3.00 - 1 * (1.31 + 0.06) = 1.62 in.
1. (phi) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 65.00 * 9.38) + (0.50 * 65.00 * 1.62)) = 117.69 kips
2. (phi) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 50.00 * 15.00) + (0.50 * 65.00 * 1.62)) = 141.42 kips
Block Shear = 117.69 kips
78.27 kips >= Reaction V = 20.00 kips (OK)

Block Shear for Axial T/C is not required.

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 10.00 in.
Zgross = 7.59 in^3
Znet   = 4.94 in^3
Sgross = 5.06 in^3
Snet   = 3.38 in^3

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 4.94 / 10.00 = 24.10 kips


Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.38 in.
ho = 9.00 in.
c = 10.00 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 9.00 * 50.00^0.5 / (10 * 0.38 * (475.00 + 280.00 * (9.00/10.00)^2 )^0.5) = 0.64
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi

Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 45.00 * 5.06 / 10.00 = 22.78 kips

Interaction Check of Flexural Yielding:
Using AISC 14th Ed. Equation 10-5
Eccentricity at CG of Bolt Group, e = 11.50 in.
Zgross = 7.59
Znet = 7.59
Mr = Vr * e = 20.00 * 11.50 = 230.00 kips-in
Mc = phi * Mn = phi * Fy * Zgross = 0.90 * 50.00 * 7.59 = 341.72 kips-in
Vr = 20.00 kips
Vc = phi * Vn = phi * 0.60 * Fy * Ag = 1.00 * 0.60 * 50.00 * 3.38 = 101.25 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (20.00 / 101.25)^2 + (230.00 / 341.72)^2 = 0.49 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
No of bolt columns = 2
tp  < = db/2 + 1/16 = 0.38 <= 0.56 OK
tw  < = db/2 + 1/16 = 0.20 <= 0.56 OK
Leh(plate) >= 2 * db = 2.00 >= 2.00 OK
Leh(bm) >= 2 * db = 2.00 >= 2.00 OK
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using AISC 14th Ed. Equation 10-6
phiRn = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.90 * 1500.00 * 3.14159 * 9.00 * 0.38^3 / 10.00^2 = 20.13 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using AISC 14th Ed. Equation 10-8 and 10-7
Required, Mta or Mtu = Ru * (tw + tp) /2 = 20.00 * ((0.19 + 0.38) / 2) = 5.62 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [phiv*(0.6*Fyp)-(Ru/(L*tp))] *L*tp^2/2 =  ((1.00 * 0.6 * 50.00) - (20.00 / (9.00 * 0.38))) * 0.5 * 9.00 * 0.38^2 = 15.23 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 8.00 in.
Shear Load per inch per weld, fv = R/Lv/2 = 20.00 / 8.00 / 2 = 1.25 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.00
Weld Coefficient = 0.60 * 70.00 * 1.00 * 1.00 * (2^0.5/2)*(1/16) = 1.86
Required weld size, Dv = fv/ (phi * coeff) = 1.25 / (0.75 * 1.86) = 0.90/16

Minimum fillet weld size : 
   At shear only load case = 0.06 in.
   per Table J2.4     = 0.19 in.
   5/8tp              = 0.23 in.
   user preference    = 0.25 in.

Dmax1 (using AISC 14th Ed. eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.09)
 = 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 ) 
 = 3.94 
Dmax2 (using AISC 14th Ed. eqn 9-3)
 = twcol * Fusupport / ( Fexx * C1 * 0.09 )
 = 0.83 * 65.00 / ( 70.00 * 1.00 * 0.09 ) 
 = 8.72 
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.94, 8.72, 12.00)
 = 3.94 

Use weld size
D1 = 4.00
D2 = 4.00

Weld Strength :

Vertical weld capacity during shear only load, phi * Rnv1 = 0.75 * 1.86 * 8.00 * (3.94 + 3.94) = 87.75 kips

87.75 kips >= Reaction V = 20.00 kips (OK)