Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bcf.s.sa.00001.00001
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W21X55
Column profile: W14X342
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: 0.00
Horizontal Offset: 0.00
Span: 31.06 ft.
Reaction, V: 45.00 kips
Axial Load T/C: 2.00/-2.00 kips
Shear Capacity, Rn: 88.48 kips
Axial Capacity T/C: 3.99/-3.99 kips
Design/Reference according to AISC 14th Ed. - LRFD
Shear Plate: Conventional Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Shear Plate Size: 4.00 in. x 14.50 in. x 0.38 in.
Configuration Geometry:
Welds at shear plate to support: 4/16 FILLET, 4/16 FILLET
Bolt: 5 rows x 1 column 0.88 in. Diameter A325N_TC bolts
Vertical spacing: 3.00 in.
Horizontal spacing: 3.00 in.
Shear plate edge setback = 0.50 in.
Beam centerline setback = 0.50 in.
Edge distance at vertical edge of plate: 1.75 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.75 in.
Horizontal distance to first hole: 2.25 in.
Down distance from top of filler beam flange: 3.00 in.
Holes in beam web: STD diameter = 0.94 in.
Holes in shear plate: SSL diameter = 0.94 in., slot width = 1.12 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND SHEAR PLATE SIDE:
Bolt Shear Capacity at Shear Load Only:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 1.12 in.
Angle = 0.00 deg.
C = 4.73
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 24.35 * 4.73 = 115.21 kips


Bolt Shear Capacity at Combined Shear and Axial Load:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 1.12 in.
Angle = 2.54 deg.
C = 4.73
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 24.35 * 4.73 = 115.08 kips

Shear Capacity = (phi)Rn * cos(Angle) = 115.08 * 1.00 = 114.96 kips
Axial Capacity = (phi)Rn * sin(Angle) = 115.08 * 0.04 = 5.11 kips

Total Vertical Bolt Shear Capacity = min(Shear Load Only, Shear and Axial Load) = min(115.21, 114.96) = 114.96 kips
114.96 kips >= Reaction V = 45.00 kips (OK)

Bolt Shear Axial Capacity at Shear and Axial Load = 5.11 kips
5.11 kips >= Axial T/C = 2.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (15.64, 0.00)
At Row 1, At Column 1:
Ribolt = 23.90 kips
Ri vector at Beam   = <8.56, 22.32>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 2.74 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.74 * (0.38/1) * 65.00 = 60.21 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 60.21, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <-8.56, -22.32>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 5.78 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 5.78 * 0.38 * 65.00 = 126.76 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 126.76, 38.39) = 38.39 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 38.39) = 38.39 kips/bolt
Bolt Shear Demand to Bearing ratio = 38.39 / 23.90 = 1.61

At Row 2, At Column 1:
Ribolt = 23.82 kips
Ri vector at Beam   = <4.49, 23.39>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 5.64 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.38/1) * 65.00 = 45.25 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.64 * (0.38/1) * 65.00 = 123.75 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(45.25, 123.75, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <-4.49, -23.39>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 9.96 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.38 * 65.00 = 45.25 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.96 * 0.38 * 65.00 = 218.50 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(45.25, 218.50, 38.39) = 38.39 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 38.39) = 38.39 kips/bolt
Bolt Shear Demand to Bearing ratio = 38.39 / 23.82 = 1.61

At Row 3, At Column 1:
Ribolt = 23.79 kips
Ri vector at Beam   = <-0.00, 23.79>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 8.53 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.38/1) * 65.00 = 45.25 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 8.53 * (0.38/1) * 65.00 = 187.16 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(45.25, 187.16, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <0.00, -23.79>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 6.78 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.38 * 65.00 = 45.25 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.78 * 0.38 * 65.00 = 148.77 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(45.25, 148.77, 38.39) = 38.39 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 38.39) = 38.39 kips/bolt
Bolt Shear Demand to Bearing ratio = 38.39 / 23.79 = 1.61

At Row 4, At Column 1:
Ribolt = 23.82 kips
Ri vector at Beam   = <-4.49, 23.39>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 8.82 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.38/1) * 65.00 = 45.25 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 8.82 * (0.38/1) * 65.00 = 193.46 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(45.25, 193.46, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <4.49, -23.39>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 3.85 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.38 * 65.00 = 45.25 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.85 * 0.38 * 65.00 = 84.47 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(45.25, 84.47, 38.39) = 38.39 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 38.39) = 38.39 kips/bolt
Bolt Shear Demand to Bearing ratio = 38.39 / 23.82 = 1.61

At Row 5, At Column 1:
Ribolt = 23.90 kips
Ri vector at Beam   = <-8.56, 22.32>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 4.42 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.42 * (0.38/1) * 65.00 = 96.88 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 96.88, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <8.56, -22.32>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 0.84 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.84 * 0.38 * 65.00 = 18.36 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 18.36, 38.39) = 18.36 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 18.36) = 18.36 kips/bolt
Bolt Shear Demand to Bearing ratio = 18.36 / 23.90 = 0.77

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
 = min(1.00, 1.61, 1.61, 1.61, 1.61, 0.77) = 0.77

BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear and Tension Load Case:
ICR cordinate relative to CG = (15.60, 0.74)
At Row 1, At Column 1:
Ribolt = 23.85 kips
Ri vector at Beam   = <7.62, 22.60>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 2.70 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.70 * (0.38/1) * 65.00 = 59.17 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 59.17, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <-7.62, -22.60>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 6.55 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.55 * 0.38 * 65.00 = 143.61 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 143.61, 38.39) = 38.39 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 38.39) = 38.39 kips/bolt
Bolt Shear Demand to Bearing ratio = 38.39 / 23.85 = 1.61

At Row 2, At Column 1:
Ribolt = 23.78 kips
Ri vector at Beam   = <3.41, 23.53>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 5.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.38/1) * 65.00 = 45.25 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.59 * (0.38/1) * 65.00 = 122.72 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(45.25, 122.72, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <-3.41, -23.53>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 9.88 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.38 * 65.00 = 45.25 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.88 * 0.38 * 65.00 = 216.82 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(45.25, 216.82, 38.39) = 38.39 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 38.39) = 38.39 kips/bolt
Bolt Shear Demand to Bearing ratio = 38.39 / 23.78 = 1.61

At Row 3, At Column 1:
Ribolt = 23.76 kips
Ri vector at Beam   = <-1.12, 23.73>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 8.54 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.38/1) * 65.00 = 45.25 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 8.54 * (0.38/1) * 65.00 = 187.38 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(45.25, 187.38, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <1.12, -23.73>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 6.79 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.38 * 65.00 = 45.25 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.79 * 0.38 * 65.00 = 148.93 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(45.25, 148.93, 38.39) = 38.39 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 38.39) = 38.39 kips/bolt
Bolt Shear Demand to Bearing ratio = 38.39 / 23.76 = 1.62

At Row 4, At Column 1:
Ribolt = 23.81 kips
Ri vector at Beam   = <-5.55, 23.15>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 7.04 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.38/1) * 65.00 = 45.25 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.04 * (0.38/1) * 65.00 = 154.51 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(45.25, 154.51, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <5.55, -23.15>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 3.89 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.38 * 65.00 = 45.25 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.89 * 0.38 * 65.00 = 85.30 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(45.25, 85.30, 38.39) = 38.39 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 38.39) = 38.39 kips/bolt
Bolt Shear Demand to Bearing ratio = 38.39 / 23.81 = 1.61

At Row 5, At Column 1:
Ribolt = 23.90 kips
Ri vector at Beam   = <-9.48, 21.94>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 3.95 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 3.95 * (0.38/1) * 65.00 = 86.56 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.38/1) * 65.00 = 38.39 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 86.56, 38.39) = 38.39 kips/bolt
Ri vector at Shear Plate   = <9.48, -21.94>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 0.85 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.85 * 0.38 * 65.00 = 18.67 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.38 * 65.00 = 38.39 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 18.67, 38.39) = 18.67 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(38.39, 18.67) = 18.67 kips/bolt
Bolt Shear Demand to Bearing ratio = 18.67 / 23.90 = 0.78

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical and axial tension
 = min(1.00, 1.61, 1.61, 1.62, 1.61, 0.78) = 0.78

BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 0.77 * 115.21 = 88.48 kips

Bearing Capacity at Vertical and Axial Tension Load, Rbvt = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 0.78 * 115.08 = 89.88 kips
Vertical Bearing Capacity at shear and axial load, Rbv2 = Rbvt * cos(Angle) = 89.88 * cos(2.54) = 89.79 kips
Axial Bearing Capacity at shear and axial load, Rba = Rbvt * sin(Angle) = 89.88 * sin(2.54) = 3.99 kips
Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(88.48, 89.79) = 88.48 kips
Rbv = 88.48 kips >= Reaction V = 45.00 kips (OK)
Rba = 3.99 kips >= Axial T/C = 2.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 20.80 - 0.00 - 0.00 = 20.80 in.

Using AISC 14th Ed. Equation J4-3
Gross Area (Shear), Agross = [Web Depth] * tw = 20.80 * 0.38 = 7.80 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fybeam * Agross = 1.00 * 0.6 * 50.00 * 7.80 = 234.00 kips

Using AISC 14th Ed. Equation J4-4
Net Area (Shear), Anet = ([Web Depth] - ([# rows] * [Diameter + 0.06])) * tw 
    = (20.80 - (5 * 1.00)) * 0.38 = 5.93 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fubeam * Anet = 0.75 * 0.6 * 65.00 * 5.93 = 173.31 kips


Check Horizontal Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear (1) Axial
Gross Shear Length = 2 * (1.75 + 0.00) = 3.50 in.
Net Shear Length = 2 * (1.75 + 0.00 - (0.50 * 1.00)) = 2.50 in.
Gross Tension Length = 4 * 3.00 = 12.00 in.
Net Tension Length = 12.00 - (4 * (1.00)) = 8.00 in.
1. (phi) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 65.00 * 2.50) + (1.00 * 65.00 * 8.00)) = 173.68 kips
2. (phi) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 50.00 * 3.50) + (1.00 * 65.00 * 8.00)) = 175.79 kips
Block Shear = 173.68 kips

Block Shear Axial Total = Block Shear (1) Axial = 173.68 kips
173.68 kips >= Axial T = 2.00 kips (OK)
Shear Plate Calcs:
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 14.50 = 5.44 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fypl * Ag = 1.00 * 0.6 * 50.00 * 5.44 = 163.12 kips

163.12 kips >= Reaction V = 45.00 kips (OK)

Using AISC 14th Ed. Equation J4-4
Net Area, An = (14.50 - (5 * (0.94 + 1/16))) * 0.38 = 3.56 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fupl * An = 0.75 * 0.6 * 65.00 * 3.56 = 104.21 kips

104.21 kips >= Reaction V = 45.00 kips (OK)


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block 1 (Shear): 
Gross Shear Length = (14.50 - 1.25) = 13.25 in.
Net Shear Length = 13.25 - (4.50 * (0.94 + 0.06)) = 8.75 in.
Gross Tension Length = (0.00 + 1.75) = 1.75 in.
Net Tension Length = 1.75 - (0.50 * (1.12 + 0.06)) = 1.16 in.
1. (phi) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 65.00 * 8.75) + (1.00 * 65.00 * 1.16)) = 117.12 kips
2. (phi) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 50.00 * 13.25) + (1.00 * 65.00 * 1.16)) = 132.94 kips
Block Shear = 117.12 kips
117.12 kips >= Reaction V = 45.00 kips (OK)

Block 1 (Axial): 
Gross Shear Length = (0.00 + 1.75) = 1.75 in.
Net Shear Length = 1.75 - (0.50 * (1.12 + 0.06)) = 1.16 in.
Gross Tension Length = (14.50 - 1.25) = 13.25 in.
Net Tension Length = 13.25 - (4.50 * (0.94 + 0.06)) = 8.75 in.
1. (phi) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 65.00 * 1.16) + (1.00 * 65.00 * 8.75)) = 172.65 kips
2. (phi) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 50.00 * 1.75) + (1.00 * 65.00 * 8.75)) = 174.73 kips
Block Shear = 172.65 kips

Block 2 (Axial): 
Gross Shear Length = 2 * (0.00 + 1.75) = 3.50 in.
Net Shear Length = 2 * (1.75 - (0.50 * (1.12 + 0.06))) = 2.31 in.
Gross Tension Length = 12.00 in.
Net Tension Length = 12.00 - 4 * (0.94 + 1/16) = 8.00 in.
1. (phi) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 65.00 * 2.31) + (1.00 * 65.00 * 8.00)) = 171.62 kips
2. (phi) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 50.00 * 3.50) + (1.00 * 65.00 * 8.00)) = 175.79 kips
Block Shear = 171.62 kips
Block Shear Axial Total = min(Block Shear (1) Axial, Block Shear (2) Axial) = min(172.65, 171.62) = 171.62 kips
171.62 kips >= Axial T = 2.00 kips (OK)

At Axial Loading:

Check Shear and Tension Interaction Block Shear:
(Reaction V/Rvblock)^2 + (Axial T/C/Rnblock)^2 = (45.00/117.12)^2 + (2.00/171.62)^2 = 0.15 <= 1 (OK)


Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity due to Conventional Config. (e = a/2), e = 1.12 in.
Zgross = 19.71
Znet = 12.87
Mr = Vr * e = 45.00 * 1.12 = 50.62 kips-in
Mc = phi * Mn = phi * Fy * Zgross = 0.90 * 50.00 * 19.71 = 886.99 kips-in
Vr = 45.00 kips
Vc = phi * Vn = phi * 0.60 * Fy * Ag = 1.00 * 0.60 * 50.00 * 5.44 = 163.12 kips
Pr = 2.00 kips
Pc (tensile yield capacity) = 244.69 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Pr/Pc + Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Pr/Pc + Mr/Mc)^2 = (45.00 / 163.12)^2 + (2.00 / 244.69 + 50.62 / 886.99)^2 = 0.08 <= 1  (OK)

Note: Mn <= 1.6My by inspection

Tensile Strength:

Gross Area, Ag = plh * plt = 14.50 * 0.38 = 5.44 in^2
Using AISC 14th Ed. Equation J4-1 on p.16.1-128
   Tension Yielding, (phi)Pny = (phi) * Fypl * Ag = 0.90 * 50.00 * 5.44 = 244.69 kips
244.69 kips >= Axial T = 2.00 kips (OK)

U = 1
Effective Tension Area, Ae = U * [Net Tension Area] = 1 * (5.44 - 1.88) = 3.56 in^2

Using AISC 14th Ed. Equation J4-2 on p.16.1-128
   Tension Rupture, (phi)Pnu = (phi) * Fupl * Ae = 0.75 * 65.00 * 3.56 = 173.68 kips
173.68 kips >= Axial T = 2.00 kips (OK)


Compression Strength:
radius of gyration = t/(12^0.5) = 0.38 / 3.46 = 0.11 in.
KL/r = 1.20 * 2.25 / 0.11 = 24.94
KL/r <= 25 use Equation J4-6:
Compression Yielding = Fypl * Ag * phi = 50.00 * 5.44 * 0.90 = 244.69 kips
244.69 kips >= Axial C = 2.00 kips (OK)

Stress Interaction on Plate due to Combined Shear, Axial and Moment Loading at First Bolt Line:

Zgx = 19.71 in^3
Znx = 12.87 in^3
Zgy = 0.51 in^3
Zny = 0.33 in^3

Mrx = Vr * ex = 45.00 * 1.12 = 50.62 kips-in
ez = 0.5*(tw+tshpl) = 0.5*(0.38 + 0.38) = 0.38 in.
Mry = Pr * ez = 2.00 * 0.38 = 0.75 kips-in
Mcx = (phi) * Zgx * Min(Fy, Fcr) = 0.90 * 19.71 * Min(50.00, 50.00) = 886.99 kips-in
Mcy = (phi) * Zgy * Fy = 0.90 * 0.51 * 50.00 = 22.94 kips-in

Using AISC 14th Ed. Equation H1-1b on p.16.1-73
For Pr / Pc  < 0.2, 0.5 * (2.00 / 244.69) + ((50.62 / 886.99) + (0.75 / 22.94)) = 0.09 <= 1 (OK)

Shear Stress on Gross Section = 45.00 / 5.44 = 8.28 ksi
Shear Stress on Net Section = 45.00 / 3.56 = 12.63 ksi
Axial Stress on Gross Section due to Axial force = 2.00 / 5.44 = 0.37 ksi
Axial Stress on Net Section due to Axial force = 2.00 / 3.56 = 0.56 ksi
Axial Stress on Gross Section due to Moment (shear) = 50.62 / 19.71 = 2.57 ksi
Axial Stress on Net Section due to Moment (shear) = 50.62 / 12.87 = 3.93 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.75 / 0.51 = 1.47 ksi
Axial Stress on Net Section due to Moment (axial) = 0.75 / 0.33 = 2.25 ksi
Axial Stress on Gross Section (total) = 0.37 + 1.47 + 2.57 = 4.41 ksi
Axial Stress on Net Section (total) = 0.56 + 2.25 + 3.93 = 6.74 ksi

Shear Yield Stress Capacity (SYSC) = phi * 0.6 * Fy = 1.00 * 0.60 * 50.00 = 30.00 ksi
Tensile Yield Stress Capacity (TYSC) = phi * Fy = 0.90 * 50.00 = 45.00 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (8.28 / 30.00)^2 + (4.41 / 45.00 )^2 = 0.09 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 65.00 = 29.25 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 65.00 = 48.75 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (12.63 / 29.25)^2 + (6.74 / 48.75 )^2 = 0.21 <= 1.0 (OK)

MAXIMUM PLATE THICKNESS:
No of columns = 1
Distance cl top to cl bot bolts <= 12" (Equivalent depth of n = 1 to 5 at 3", AISC Table 10-9)
Slot shape = SSL
tmax = Unlimited
Maximum Plate Thickness is Not a Limiting Criteria.
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 14.50 in.
Shear Load per inch per weld, fv = R/Lv/2 = 45.00 / 14.50 / 2 = 1.55 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.00
Weld Coefficient = 0.60 * 70.00 * 1.00 * 1.00 * (2^0.5/2)*(1/16) = 1.86
Required weld size, Dv = fv/ (phi * coeff) = 1.55 / (0.75 * 1.86) = 1.11/16

At shear and axial load case: 
Weld Length for shear, Lv = 14.50 in.
Shear Load per inch per weld, fv = Reaction V/Lv/2 = 45.00 / 14.50 / 2 = 1.55 kips/in/ weld 
Weld length for axial transfer (opposites overlap length) La = 14.50 in.
Axial Load per inch per weld, fa = Axial T/C/La/2 = 2.00 / 14.50 / 2 = 0.07 kips/in/ weld 
Resultant Load per inch per weld, fres = (fv^2 * fa^2)^0.5 = 1.55 kips/in/weld 
theta = atan(fa/fv) = atan(0.07 / 1.55) = 2.54 deg.
cPhi  = 1.0 + 0.5 * sin(2.54)^1.5 = 1.00
Weld Coefficient = 0.60 * 70.00 * 1.00 * 1.00 * (2^0.5/2)*(1/16) = 1.86
Required weld size, Dres = fres/ (phi * coeff) = 1.55 / (0.75 * 1.86) = 1.11/16

Minimum fillet weld size : 
   At shear only load case = 0.07 in.
   At shear and axial load case = 0.07 in.
   per Table J2.4     = 0.19 in.
   5/8tp              = 0.23 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.09)
 = 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 ) 
 = 3.94 
Dmax2 (using eqn 9-2)
 = tfsupport * Fusupport / ( Fexx * C1 * 0.04 )
 = 2.47 * 65.00 / ( 70.00 * 1.00 * 0.04 ) 
 = 51.90 
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.94, 51.90, 12.00)
 = 3.94 

Use weld size
D1 = 4.00
D2 = 4.00

Weld Strength :

Vertical weld capacity during shear only load, phi * Rnv1 = 0.75 * 1.86 * 14.50 * (3.94 + 3.94) = 159.05 kips
Vertical weld capacity during shear and axial load, phi * Rnv2 = 0.75 * 1.86 * 14.50 * (3.94 + 3.94) * cos(2.54) = 159.64 kips
Overall vertical weld capacity = min(phi * Rnv1, phi * Rnv2) = 159.05 kips
Axial weld capacity during shear and axial load, phi * Rna = 0.75 * 1.86 * 14.50 * (3.94 + 3.94) * sin(2.54) = 7.09 kips

159.05 kips >= Reaction V = 45.00 kips (OK)
7.09 kips >= Axial T/C = 2.00 kips (OK)
Support Column Calcs:
(Not applicable / No results )