Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bcw.s.s.02185.02185
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

NOTE: DESIGNED WITH MEMBERS CHOSEN ON ONLY ONE SIDE OF SUPPORT

Filler Beam profile: W27X178
Column profile: W12X120
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: 0.00
Horizontal Offset: 0.00
Span: 20.00 ft.
Reaction, V: 30.00 kips
Shear Capacity, Rn: 36.94 kips
Design/Reference according to AISC 14th Ed. - LRFD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Shear Plate Size: 9.38 in. x 14.50 in. x 0.38 in.
Configuration Geometry:
Welds at shear plate to support: 4/16 FILLET, 4/16 FILLET
Bolt: 5 rows x 1 column 0.75 in. Diameter A325N_TC bolts
Vertical spacing: 3.00 in.
Horizontal spacing: 3.00 in.
Shear plate edge setback = 6.38 in.
Beam centerline setback = 6.38 in.
Edge distance at vertical edge of plate: 1.50 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.50 in.
Horizontal distance to first hole: 7.88 in.
Down distance from top of filler beam flange: 3.75 in.
Holes in beam web: STD diameter = 0.81 in.
Holes in shear plate: SSL diameter = 0.81 in., slot width = 1.00 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND SHEAR PLATE SIDE:
Bolt Shear Capacity at Shear Load Only:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 7.88 in.
Angle = 0.00 deg.
C = 2.06
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 17.89 * 2.06 = 36.94 kips


Total Vertical Bolt Shear Capacity = 36.94 kips
36.94 kips >= Reaction V = 30.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.55, -0.00)
At Row 1, At Column 1:
Ribolt = 17.56 kips
Ri vector at Beam   = <17.00, 4.40>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 14.57 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 14.57 * (0.72/1) * 65.00 = 618.04 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.72/1) * 65.00 = 63.62 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 618.04, 63.62) = 63.62 kips/bolt
Ri vector at Shear Plate   = <-17.00, -4.40>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 7.62 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 7.62 * 0.38 * 65.00 = 167.12 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 167.12, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(63.62, 32.91) = 32.91 kips/bolt
Bolt Shear Demand to Bearing ratio = 32.91 / 17.56 = 1.87

At Row 2, At Column 1:
Ribolt = 16.29 kips
Ri vector at Beam   = <14.47, 7.48>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 14.29 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 14.29 * (0.72/1) * 65.00 = 605.98 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.72/1) * 65.00 = 63.62 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 605.98, 63.62) = 63.62 kips/bolt
Ri vector at Shear Plate   = <-14.47, -7.48>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 8.30 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 8.30 * 0.38 * 65.00 = 182.15 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 182.15, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(63.62, 32.91) = 32.91 kips/bolt
Bolt Shear Demand to Bearing ratio = 32.91 / 16.29 = 2.02

At Row 3, At Column 1:
Ribolt = 13.17 kips
Ri vector at Beam   = <0.00, 13.17>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 9.34 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.72/1) * 65.00 = 92.78 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 9.34 * (0.72/1) * 65.00 = 396.30 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.72/1) * 65.00 = 63.62 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(92.78, 396.30, 63.62) = 63.62 kips/bolt
Ri vector at Shear Plate   = <-0.00, -13.17>
Lcsshpl at Shear Plate spacing  = 2.19 in.
Lceshpl at Shear Plate edge    = 6.84 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.38 * 65.00 = 47.99 kips/bolt
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.84 * 0.38 * 65.00 = 150.14 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(47.99, 150.14, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(63.62, 32.91) = 32.91 kips/bolt
Bolt Shear Demand to Bearing ratio = 32.91 / 13.17 = 2.50

At Row 4, At Column 1:
Ribolt = 16.29 kips
Ri vector at Beam   = <-14.47, 7.48>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 1.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.28 * (0.72/1) * 65.00 = 54.40 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.72/1) * 65.00 = 63.62 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 54.40, 63.62) = 54.40 kips/bolt
Ri vector at Shear Plate   = <14.47, -7.48>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 1.13 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 1.13 * 0.38 * 65.00 = 24.70 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 24.70, 32.91) = 24.70 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(54.40, 24.70) = 24.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 24.70 / 16.29 = 1.52

At Row 5, At Column 1:
Ribolt = 17.56 kips
Ri vector at Beam   = <-17.00, 4.40>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 1.14 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = na
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.14 * (0.72/1) * 65.00 = 48.48 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.72/1) * 65.00 = 63.62 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(na, 48.48, 63.62) = 48.48 kips/bolt
Ri vector at Shear Plate   = <17.00, -4.40>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 1.03 in.
(phi)Rnsshpl at Shear Plate spacing = (phi) * hf1 * Lcs * t * Fu = na
(phi)Rneshpl at Shear Plate edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 1.03 * 0.38 * 65.00 = 22.66 kips/bolt
(phi)Rndshpl on Shear Plate at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Shear Plate bearing capacity, (phi)Rnshpl = min((phi)Rnsshpl,(phi)Rneshpl,(phi)Rndshpl) = min(na, 22.66, 32.91) = 22.66 kips/bolt
(phi)Rn = min((phi)Rnbm, (phi)Rnshpl) = min(48.48, 22.66) = 22.66 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.66 / 17.56 = 1.29

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
 = min(1.00, 1.87, 2.02, 2.50, 1.52, 1.29) = 1.00

BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 36.94 = 36.94 kips
Rbv = 36.94 kips >= Reaction V = 30.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 27.80 - 0.00 - 0.00 = 27.80 in.

Using AISC 14th Ed. Equation J4-3
Gross Area (Shear), Agross = [Web Depth] * tw = 27.80 * 0.72 = 20.16 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fybeam * Agross = 1.00 * 0.6 * 50.00 * 20.16 = 604.65 kips

Using AISC 14th Ed. Equation J4-4
Net Area (Shear), Anet = ([Web Depth] - ([# rows] * [Diameter + 0.06])) * tw 
    = (27.80 - (5 * 0.88)) * 0.72 = 16.98 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fubeam * Anet = 0.75 * 0.6 * 65.00 * 16.98 = 496.77 kips


Check Horizontal Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear for Axial T/C is not required.
Shear Plate Calcs:
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 14.50 = 5.44 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fypl * Ag = 1.00 * 0.6 * 50.00 * 5.44 = 163.12 kips

163.12 kips >= Reaction V = 30.00 kips (OK)

Using AISC 14th Ed. Equation J4-4
Net Area, An = (14.50 - (5 * (0.81 + 1/16))) * 0.38 = 3.80 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fupl * An = 0.75 * 0.6 * 65.00 * 3.80 = 111.06 kips

111.06 kips >= Reaction V = 30.00 kips (OK)


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block 1 (Shear): 
Gross Shear Length = (14.50 - 1.25) = 13.25 in.
Net Shear Length = 13.25 - (4.50 * (0.81 + 0.06)) = 9.31 in.
Gross Tension Length = (0.00 + 1.50) = 1.50 in.
Net Tension Length = 1.50 - (0.50 * (1.00 + 0.06)) = 0.97 in.
1. (phi) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 65.00 * 9.31) + (1.00 * 65.00 * 0.97)) = 119.86 kips
2. (phi) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.75 * 0.38 * ((0.60 * 50.00 * 13.25) + (1.00 * 65.00 * 0.97)) = 129.51 kips
Block Shear = 119.86 kips
119.86 kips >= Reaction V = 30.00 kips (OK)

Block Shear for Axial T/C is not required.

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 7.88 in.
Zgross = 19.71 in^3
Znet   = 13.73 in^3
Sgross = 13.14 in^3
Snet   = 9.07 in^3

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 13.73 / 7.88 = 85.02 kips


Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.38 in.
ho = 14.50 in.
c = 7.88 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 14.50 * 50.00^0.5 / (10 * 0.38 * (475.00 + 280.00 * (14.50/7.88)^2 )^0.5) = 0.72
When 0.70 < lambda <= 1.41, Q=1.34 - 0.49 * lambda
Q = 0.99
Fcrmin =phi * Fcr = 0.90 * 50.00 * 0.99 = 44.46 ksi

Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 44.46 * 13.14 / 7.88 = 74.18 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 7.88 in.
Zgross = 19.71
Znet = 13.73
Mr = Vr * e = 30.00 * 7.88 = 236.25 kips-in
Mc = phi * Mn = phi * Fy * Zgross = 0.90 * 50.00 * 19.71 = 886.99 kips-in
Vr = 30.00 kips
Vc = phi * Vn = phi * 0.60 * Fy * Ag = 1.00 * 0.60 * 50.00 * 5.44 = 163.12 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (30.00 / 163.12)^2 + (236.25 / 886.99)^2 = 0.10 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
No of bolt columns = 1
tp  < = db/2 + 1/16 = 0.38 <= 0.44 OK
Leh(plate) >= 2 * db = 1.50 >= 1.50 OK
Leh(bm) >= 2 * db = 1.50 >= 1.50 OK
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using AISC 14th Ed. Equation 10-6
phiRn = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.90 * 1500.00 * 3.14159 * 14.50 * 0.38^3 / 7.88^2 = 52.29 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using AISC 14th Ed. Equation 10-8 and 10-7
Required, Mta or Mtu = Ru * (tw + tp) /2 = 30.00 * ((0.75 + 0.38) / 2) = 16.88 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [phiv*(0.6*Fyp)-(Ru/(L*tp))] *L*tp^2/2 =  ((1.00 * 0.6 * 50.00) - (30.00 / (14.50 * 0.38))) * 0.5 * 14.50 * 0.38^2 = 24.96 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 14.50 in.
Shear Load per inch per weld, fv = R/Lv/2 = 30.00 / 14.50 / 2 = 1.03 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.00
Weld Coefficient = 0.60 * 70.00 * 1.00 * 1.00 * (2^0.5/2)*(1/16) = 1.86
Required weld size, Dv = fv/ (phi * coeff) = 1.03 / (0.75 * 1.86) = 0.74/16

Minimum fillet weld size : 
   At shear only load case = 0.05 in.
   per Table J2.4     = 0.19 in.
   5/8tp              = 0.23 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.09)
 = 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 ) 
 = 3.94 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.09 )
 = 0.71 * 65.00 / ( 70.00 * 1.00 * 0.09 ) 
 = 7.46 
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.94, 7.46, 12.00)
 = 3.94 

Use weld size
D1 = 4.00
D2 = 4.00

Weld Strength :

Vertical weld capacity during shear only load, phi * Rnv1 = 0.75 * 1.86 * 14.50 * (3.94 + 3.94) = 159.05 kips

159.05 kips >= Reaction V = 30.00 kips (OK)