Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bcw.s.s.01923.01923
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W12X14
Column profile: W14X176
Slope: 0 deg.
Skew: 90
Vertical Offset: 0
Horizontal Offset: 0
Span: 10 ft.
Reaction, V: 25 kips
Shear Capacity, Rn: 27.8 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Stabilizer plate grade: A572-GR.50
Shear Plate Size: 17.500 in. x 8.500 in. x 0.750 in.
Shear Plate Detailing Height at Support: 9.625 in.
Shear Plate Detailing Width at Support: 7.375 in.
Stabilizer plate size: 12.500 in. x 7.375 in. x 0.625 in.
(Required due to user requirement)
Configuration Geometry:
Welds at shear plate to support: 8/16 FILLET, 8/16 FILLET
Welds at stabilizer plate :
at column flange: 5/16 FILLET, 5/16 FILLET
at column web: 4/16 FILLET, 4/16 FILLET
at shear plate: 4/16 FILLET, 4/16 FILLET
Bolt: 3 rows x 3 columns 0.875 in. Diameter A325N_TC bolts
Vertical spacing: 3 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 8 in.
Beam centerline setback = 8 in.
Edge distance at vertical edge of plate: 1.75 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.75 in.
Horizontal distance to first hole: 9.75 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.938 in.
Holes in shear plate: SSL diameter = 0.938 in., slot width = 1.12 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND SHEAR PLATE SIDE:
Bolt Shear Capacity at Shear Load Only:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 12.750 in.
Angle = 0.000 deg.
C = 2.091
Using Table 7-1 to determine (1/omega)rn:
(1/omega)Rn = (1/omega)rn * C = 16.24 * 2.09 = 33.95 kips


Total Vertical Bolt Shear Capacity = 33.95 kips
33.95 kips >= 25.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.14, -0.00)
At Row 1, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <9.36, 12.90>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 3.24 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.24 * (0.20/1) * 65.00 = 25.25 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 25.25, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-9.36, -12.90>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 8.38 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 8.38 * 0.75 * 65.00 = 245.05 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 245.05, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.94 = 0.86

At Row 1, At Column 2:
Ribolt = 15.15 kips
Ri vector at Beam   = <14.17, 5.36>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 8.01 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 8.01 * (0.20/1) * 65.00 = 62.46 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 62.46, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-14.17, -5.36>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 13.03 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 13.03 * 0.75 * 65.00 = 381.15 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 381.15, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.15 = 0.90

At Row 1, At Column 3:
Ribolt = 15.37 kips
Ri vector at Beam   = <13.05, -8.11>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 16.39 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 16.39 * (0.20/1) * 65.00 = 127.84 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 127.84, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-13.05, 8.11>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 1.71 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.71 * 0.75 * 65.00 = 49.89 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 49.89, 51.19) = 49.89 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 49.886) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.37 = 0.89

At Row 2, At Column 1:
Ribolt = 15.66 kips
Ri vector at Beam   = <0.00, 15.66>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 5.53 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.20/1) * 65.00 = 16.09 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.53 * (0.20/1) * 65.00 = 43.14 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(16.09, 43.14, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-0.00, -15.66>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 3.78 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.06 * 0.75 * 65.00 = 60.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.78 * 0.75 * 65.00 = 110.60 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(60.33, 110.60, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.66 = 0.87

At Row 2, At Column 2:
Ribolt = 11.45 kips
Ri vector at Beam   = <0.00, 11.45>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 5.53 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.20/1) * 65.00 = 16.09 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.53 * (0.20/1) * 65.00 = 43.14 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(16.09, 43.14, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-0.00, -11.45>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 3.78 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.06 * 0.75 * 65.00 = 60.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.78 * 0.75 * 65.00 = 110.60 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(60.33, 110.60, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 11.45 = 1.19

At Row 2, At Column 3:
Ribolt = 13.46 kips
Ri vector at Beam   = <0.00, -13.46>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 5.43 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.20/1) * 65.00 = 16.09 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.43 * (0.20/1) * 65.00 = 42.36 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(16.09, 42.36, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-0.00, 13.46>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 3.78 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.06 * 0.75 * 65.00 = 60.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.78 * 0.75 * 65.00 = 110.60 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(60.33, 110.60, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 13.46 = 1.01

At Row 3, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <-9.36, 12.90>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 2.51 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.51 * (0.20/1) * 65.00 = 19.59 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 19.59, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <9.36, -12.90>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 0.97 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.97 * 0.75 * 65.00 = 28.23 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 28.23, 51.19) = 28.23 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 28.232) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.94 = 0.86

At Row 3, At Column 2:
Ribolt = 15.15 kips
Ri vector at Beam   = <-14.17, 5.36>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 4.61 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.61 * (0.20/1) * 65.00 = 35.96 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 35.96, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <14.17, -5.36>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 2.93 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.93 * 0.75 * 65.00 = 85.72 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 85.72, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.15 = 0.90

At Row 3, At Column 3:
Ribolt = 15.37 kips
Ri vector at Beam   = <-13.05, -8.11>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 5.02 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.02 * (0.20/1) * 65.00 = 39.19 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 39.19, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <13.05, 8.11>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 1.40 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.40 * 0.75 * 65.00 = 40.90 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 40.90, 51.19) = 40.90 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 40.898) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.37 = 0.89

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
 = min(1.00, 0.86, 0.90, 0.89, 0.87, 1.19, 1.01, 0.86, 0.90, 0.89) = 0.86

BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 0.86 * 33.95 = 29.08 kips
Rbv = 29.08 kips >= V = 25.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 11.9 - 0 - 0 = 11.9 in.
Gross Area (Shear) = [Web Depth] * tw = 11.90 * 0.20 = 2.38 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (11.90 - (3 * 1.00)) * 0.20 = 1.78 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.38 = 47.60 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.78 = 34.71 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Shear Plate Calcs:
Gross Area = 0.75 * 8.50 = 6.38 in^2
Net Area = (8.50 - (3 *(0.94 + 1/16))) * 0.75 = 4.12 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 50.00 * 6.38 = 127.50 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 65.00 * 4.12 = 80.44 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (8.5 - 1.25) = 7.25 in.
Net Shear Length = 7.25 - (2.5 * (0.938 + 0.0625)) = 4.75 in.
Gross Tension Length = (6 + 1.75) = 7.75 in.
Net Tension Length = 7.75 - (2.5 * (1.12 + 0.0625)) = 4.78 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 65.00 * 4.75) + (0.50 * 65.00 * 4.78)) = 127.74 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 50.00 * 7.25) + (0.50 * 65.00 * 4.78)) = 139.83 kips
Block Shear = 127.74 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (8.5 - 1.25) = 14.50 in.
Net Shear Length = 2 * ( 7.25 - (2.5 * (0.938 + 0.0625)) ) = 9.50 in.
Gross Tension Length = (6 + 1.75) - 1.75 = 6.00 in.
Net Tension Length = 6 - 2 * (1.12 + 0.0625) = 3.62 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 65.00 * 9.50) + (0.50 * 65.00 * 3.62)) = 183.12 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 50.00 * 14.50) + (0.50 * 65.00 * 3.62)) = 207.30 kips
Block Shear = 183.12 kips

127.74 kips >= Reaction V = 25.00 kips (OK)

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.75 in.
Zgross = 13.55 in^3
Znet   = 8.86 in^3
Sgross = 9.03 in^3
Snet   = 5.85 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 8.86 / 9.75 = 29.53 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.75 in.
ho = 8.50 in.
c = 9.75 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 8.50 * 50.00^0.5 / (10 * 0.75 * (475.00 + 280.00 * (8.50/9.75)^2 )^0.5) = 0.31
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 30.00 * 9.03 / 9.75 = 27.79 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 12.75 in.
Zgross = 13.55
Znet = 8.86
Mr = Vr * e = 25.00 * 12.75 = 318.75 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 50.00 * 13.55 = 406.41 kips-in
Vr = 25.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 50.00 * 6.38 = 127.50 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (25.00 / 127.50)^2 + (318.75 / 406.41)^2 = 0.65 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
tmax = 6 * Mmax / (Fypl * d^2) Eq. 10-3
Mmax = (1/0.9) * Fv * Ab * C' Eq. 10-4
Mmax = (1/0.9) * 54 * 0.60132 * 28.0478 = 1011.94 kips-in
tmax = 6 * 1011.94 / (50 * 8.5^2) = 1.68 in.
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 8.50 * 0.75^3 / 9.75^2 = 106.66 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 25.00 * ((0.19 + 0.75) / 2) = 11.72 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 =  ((0.67 * 0.6 * 50.00) - (25.00 / (8.50 * 0.75))) * 0.5 * 8.50 * 0.75^2 = 38.44 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 8.125 in.
Shear Load per inch per weld, fv = R/Lv/2 = 25.000 / 8.125 / 2 = 1.538 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 1.538 / (0.500 * 1.856) = 1.658/16

Minimum fillet weld size : 
   At shear only load case = 0.10 in.
   per Table J2.4     = 0.25 in.
   5/8tp              = 0.47 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 0.750 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 7.879 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 0.830 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 8.720 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(7.879, 8.720, 12.000)
 = 7.879 

Use weld size
D1 = 8.00
D2 = 8.00

Weld Strength :

Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 8.12 * (7.88 + 7.88) = 118.83 kips

118.83 kips >= Vbm = 25.00 kips (OK)