Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bcw.s.s.01854.01854
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W12X14
Column profile: W14X176
Slope: 0 deg.
Skew: 90
Vertical Offset: 0
Horizontal Offset: 0
Span: 10 ft.
Reaction, V: 25 kips
Shear Capacity, Rn: 25.1 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Stabilizer plate grade: A572-GR.50
Shear Plate Size: 20.500 in. x 7.000 in. x 1.000 in.
Shear Plate Detailing Height at Support: 7.000 in.
Shear Plate Detailing Width at Support: 7.375 in.
Stabilizer plate size: 12.500 in. x 7.375 in. x 0.625 in.
(Required due to user requirement)
Configuration Geometry:
Welds at shear plate to support: 10/16 FILLET, 10/16 FILLET
Welds at stabilizer plate :
at column flange: 5/16 FILLET, 5/16 FILLET
at column web: 4/16 FILLET, 4/16 FILLET
at shear plate: 4/16 FILLET, 4/16 FILLET
Bolt: 2 rows x 4 columns 0.875 in. Diameter A325N_TC bolts
Vertical spacing: 4.5 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 8 in.
Beam centerline setback = 8 in.
Edge distance at vertical edge of plate: 1.75 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.75 in.
Horizontal distance to first hole: 9.75 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.938 in.
Holes in shear plate: SSL diameter = 0.938 in., slot width = 1.12 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND SHEAR PLATE SIDE:
Bolt Shear Capacity at Shear Load Only:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 14.250 in.
Angle = 0.000 deg.
C = 1.909
Using Table 7-1 to determine (1/omega)rn:
(1/omega)Rn = (1/omega)rn * C = 16.24 * 1.91 = 31.00 kips


Total Vertical Bolt Shear Capacity = 31.00 kips
31.00 kips >= 25.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.56, -0.00)
At Row 1, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <5.55, 14.94>
Lcsbm at Beam spacing  = 4.13 in.
Lcebm at Beam edge    = 2.73 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.13 * (0.20/1) * 65.00 = 32.23 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.73 * (0.20/1) * 65.00 = 21.31 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(32.23, 21.31, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-5.55, -14.94>
Lcsshpl at Shear Plate spacing  = 4.09 in.
Lceshpl at Shear Plate edge    = 5.63 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.09 * 1.00 * 65.00 = 159.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 5.63 * 1.00 * 65.00 = 219.72 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 1.00 * 65.00 = 68.25 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(159.33, 219.72, 68.25) = 68.25 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 68.250) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.94 = 0.86

At Row 1, At Column 2:
Ribolt = 14.98 kips
Ri vector at Beam   = <8.88, 12.07>
Lcsbm at Beam spacing  = 4.13 in.
Lcebm at Beam edge    = 3.26 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.13 * (0.20/1) * 65.00 = 32.23 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.26 * (0.20/1) * 65.00 = 25.39 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(32.23, 25.39, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-8.88, -12.07>
Lcsshpl at Shear Plate spacing  = 4.09 in.
Lceshpl at Shear Plate edge    = 6.56 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.09 * 1.00 * 65.00 = 159.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.56 * 1.00 * 65.00 = 255.71 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 1.00 * 65.00 = 68.25 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(159.33, 255.71, 68.25) = 68.25 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 68.250) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 14.98 = 0.91

At Row 1, At Column 3:
Ribolt = 13.28 kips
Ri vector at Beam   = <13.28, 0.34>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 115.64 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.20/1) * 65.00 = 16.09 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 115.64 * (0.20/1) * 65.00 = 902.03 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(16.09, 902.03, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-13.28, -0.34>
Lcsshpl at Shear Plate spacing  = 1.88 in.
Lceshpl at Shear Plate edge    = 15.19 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.88 * 1.00 * 65.00 = 73.12 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 15.19 * 1.00 * 65.00 = 592.51 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 1.00 * 65.00 = 68.25 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(73.12, 592.51, 68.25) = 68.25 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 68.250) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 13.28 = 1.03

At Row 1, At Column 4:
Ribolt = 14.92 kips
Ri vector at Beam   = <9.06, -11.85>
Lcsbm at Beam spacing  = 4.13 in.
Lcebm at Beam edge    = 10.74 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.13 * (0.20/1) * 65.00 = 32.23 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 10.74 * (0.20/1) * 65.00 = 83.74 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(32.23, 83.74, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-9.06, 11.85>
Lcsshpl at Shear Plate spacing  = 4.09 in.
Lceshpl at Shear Plate edge    = 0.98 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.09 * 1.00 * 65.00 = 159.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.98 * 1.00 * 65.00 = 38.36 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 1.00 * 65.00 = 68.25 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(159.33, 38.36, 68.25) = 38.36 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 38.359) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 14.92 = 0.91

At Row 2, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <-5.55, 14.94>
Lcsbm at Beam spacing  = 4.13 in.
Lcebm at Beam edge    = 4.56 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.13 * (0.20/1) * 65.00 = 32.23 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.56 * (0.20/1) * 65.00 = 35.55 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(32.23, 35.55, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <5.55, -14.94>
Lcsshpl at Shear Plate spacing  = 4.09 in.
Lceshpl at Shear Plate edge    = 0.83 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.09 * 1.00 * 65.00 = 159.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.83 * 1.00 * 65.00 = 32.50 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 1.00 * 65.00 = 68.25 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(159.33, 32.50, 68.25) = 32.50 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 32.502) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.94 = 0.86

At Row 2, At Column 2:
Ribolt = 14.98 kips
Ri vector at Beam   = <-8.88, 12.07>
Lcsbm at Beam spacing  = 4.13 in.
Lcebm at Beam edge    = 7.55 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.13 * (0.20/1) * 65.00 = 32.23 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 7.55 * (0.20/1) * 65.00 = 58.86 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(32.23, 58.86, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <8.88, -12.07>
Lcsshpl at Shear Plate spacing  = 4.09 in.
Lceshpl at Shear Plate edge    = 0.97 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.09 * 1.00 * 65.00 = 159.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.97 * 1.00 * 65.00 = 37.83 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 1.00 * 65.00 = 68.25 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(159.33, 37.83, 68.25) = 37.83 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 37.827) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 14.98 = 0.91

At Row 2, At Column 3:
Ribolt = 13.28 kips
Ri vector at Beam   = <-13.28, 0.34>
Lcsbm at Beam spacing  = 2.06 in.
Lcebm at Beam edge    = 7.28 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.20/1) * 65.00 = 16.09 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 7.28 * (0.20/1) * 65.00 = 56.81 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(16.09, 56.81, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <13.28, -0.34>
Lcsshpl at Shear Plate spacing  = 1.88 in.
Lceshpl at Shear Plate edge    = 4.19 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.88 * 1.00 * 65.00 = 73.12 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 4.19 * 1.00 * 65.00 = 163.37 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 1.00 * 65.00 = 68.25 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(73.12, 163.37, 68.25) = 68.25 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 68.250) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 13.28 = 1.03

At Row 2, At Column 4:
Ribolt = 14.92 kips
Ri vector at Beam   = <-9.06, -11.85>
Lcsbm at Beam spacing  = 4.13 in.
Lcebm at Beam edge    = 5.07 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.13 * (0.20/1) * 65.00 = 32.23 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.07 * (0.20/1) * 65.00 = 39.55 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(32.23, 39.55, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <9.06, 11.85>
Lcsshpl at Shear Plate spacing  = 4.09 in.
Lceshpl at Shear Plate edge    = 2.29 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.09 * 1.00 * 65.00 = 159.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.29 * 1.00 * 65.00 = 89.33 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 1.00 * 65.00 = 68.25 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(159.33, 89.33, 68.25) = 68.25 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 68.250) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 14.92 = 0.91

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
 = min(1.00, 0.86, 0.91, 1.03, 0.91, 0.86, 0.91, 1.03, 0.91) = 0.86

BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 0.86 * 31.00 = 26.55 kips
Rbv = 26.55 kips >= V = 25.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 11.9 - 0 - 0 = 11.9 in.
Gross Area (Shear) = [Web Depth] * tw = 11.90 * 0.20 = 2.38 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (11.90 - (2 * 1.00)) * 0.20 = 1.98 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.38 = 47.60 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.98 = 38.61 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Shear Plate Calcs:
Gross Area = 1.00 * 7.00 = 7.00 in^2
Net Area = (7.00 - (2 *(0.94 + 1/16))) * 1.00 = 5.00 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 50.00 * 7.00 = 140.00 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 65.00 * 5.00 = 97.50 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (7 - 1.25) = 5.75 in.
Net Shear Length = 5.75 - (1.5 * (0.938 + 0.0625)) = 4.25 in.
Gross Tension Length = (9 + 1.75) = 10.75 in.
Net Tension Length = 10.8 - (3.5 * (1.12 + 0.0625)) = 6.59 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 65.00 * 4.25) + (0.50 * 65.00 * 6.59)) = 190.02 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 50.00 * 5.75) + (0.50 * 65.00 * 6.59)) = 193.40 kips
Block Shear = 190.02 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (7 - 1.25) = 11.50 in.
Net Shear Length = 2 * ( 5.75 - (1.5 * (0.938 + 0.0625)) ) = 8.50 in.
Gross Tension Length = (9 + 1.75) - 1.75 = 9.00 in.
Net Tension Length = 9 - 3 * (1.12 + 0.0625) = 5.44 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 65.00 * 8.50) + (0.50 * 65.00 * 5.44)) = 254.11 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 50.00 * 11.50) + (0.50 * 65.00 * 5.44)) = 260.86 kips
Block Shear = 254.11 kips

190.02 kips >= Vbm = 25.00 kips (OK)

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.75 in.
Zgross = 12.25 in^3
Znet   = 7.75 in^3
Sgross = 8.17 in^3
Snet   = 5.27 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 7.75 / 9.75 = 25.83 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 1.00 in.
ho = 7.00 in.
c = 9.75 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 7.00 * 50.00^0.5 / (10 * 1.00 * (475.00 + 280.00 * (7.00/9.75)^2 )^0.5) = 0.20
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 30.00 * 8.17 / 9.75 = 25.13 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 14.25 in.
Zgross = 12.25
Znet = 12.25
Mr = Vr * e = 25.00 * 14.25 = 356.25 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 50.00 * 12.25 = 367.50 kips-in
Vr = 25.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 50.00 * 7.00 = 140.00 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (25.00 / 140.00)^2 + (356.25 / 367.50)^2 = 0.97 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
tmax = 6 * Mmax / (Fypl * d^2) Eq. 10-3
Mmax = (1/0.9) * Fv * Ab * C' Eq. 10-4
Mmax = (1/0.9) * 54 * 0.60132 * 29.5747 = 1067.03 kips-in
tmax = 6 * 1067.03 / (50 * 7^2) = 2.61 in.
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 7.00 * 1.00^3 / 9.75^2 = 208.20 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 25.00 * ((0.19 + 1.00) / 2) = 14.84 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 =  ((0.67 * 0.6 * 50.00) - (25.00 / (7.00 * 1.00))) * 0.5 * 7.00 * 1.00^2 = 57.50 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 5.500 in.
Shear Load per inch per weld, fv = R/Lv/2 = 25.000 / 5.500 / 2 = 2.273 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 2.273 / (0.500 * 1.856) = 2.449/16

Minimum fillet weld size : 
   At shear only load case = 0.15 in.
   per Table J2.4     = 0.31 in.
   5/8tp              = 0.62 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 1.000 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 10.506 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 0.830 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 8.720 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(10.506, 8.720, 12.000)
 = 8.720 

Use weld size
D1 = 10.00
D2 = 10.00

Weld Strength :

Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 5.50 * (8.72 + 8.72) = 89.02 kips

89.02 kips >= Vbm = 25.00 kips (OK)