BOLT BEARING AT SUPPORT AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 14.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.37 * (0.32/1) * 65.00 = 264.79 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 264.79, 36.86) = 35.70 kips/bolt
Lcsang1 at Angle 1 spacing = 1.94 in.
Lceang1 at Angle 1 edge = 0.72 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.72 * 0.31 * 58.00 = 11.74 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(31.66, 11.74, 32.68) = 11.74 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(40.06, 35.70, 11.74) = 11.74 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 11.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 11.37 * (0.32/1) * 65.00 = 209.50 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 209.50, 36.86) = 35.70 kips/bolt
Lcsang1 at Angle 1 spacing = 1.94 in.
Lceang1 at Angle 1 edge = 3.72 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.72 * 0.31 * 58.00 = 60.76 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(31.66, 60.76, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 8.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 8.37 * (0.32/1) * 65.00 = 154.22 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 154.22, 36.86) = 35.70 kips/bolt
Lcsang1 at Angle 1 spacing = 1.94 in.
Lceang1 at Angle 1 edge = 6.72 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.72 * 0.31 * 58.00 = 109.78 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(31.66, 109.78, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
Bearing Capacity at Support and Angle 1 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 11.74 + 31.66 + 31.66 = 75.06 kips
BOLT BEARING AT SUPPORT AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 14.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.37 * (0.32/1) * 65.00 = 264.79 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 264.79, 36.86) = 35.70 kips/bolt
Lcsang2 at Angle 2 spacing = 1.94 in.
Lceang2 at Angle 2 edge = 0.72 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.72 * 0.31 * 58.00 = 11.74 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(31.66, 11.74, 32.68) = 11.74 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(40.06, 35.70, 11.74) = 11.74 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 11.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 11.37 * (0.32/1) * 65.00 = 209.50 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 209.50, 36.86) = 35.70 kips/bolt
Lcsang2 at Angle 2 spacing = 1.94 in.
Lceang2 at Angle 2 edge = 3.72 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.72 * 0.31 * 58.00 = 60.76 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(31.66, 60.76, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 8.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 8.37 * (0.32/1) * 65.00 = 154.22 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 154.22, 36.86) = 35.70 kips/bolt
Lcsang2 at Angle 2 spacing = 1.94 in.
Lceang2 at Angle 2 edge = 6.72 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.72 * 0.31 * 58.00 = 109.78 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(31.66, 109.78, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
Bearing Capacity at Support and Angle 2 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 11.74 + 31.66 + 31.66 = 75.06 kips
BEARING AT SUPPORT AND ANGLES SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv1 = Sum{ [(Row)i,(Column)i] } / gage1 ratio = 75.06 / 0.50 = 150.11 kips
Bearing Capacity at Vertical Shear Load Only, Rbv2 = Sum{ [(Row)i,(Column)i] } / gage2 ratio = 75.06 / 0.50 = 150.11 kips
Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(150.11, 150.11) = 150.11 kips
150.11 kips >= 60.00 kips (OK) |
Angle1
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 8.50 = 2.66 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 36.00 * 2.66 = 57.47 kips
Shear Rupture:
Using AISC 14th Ed. Equation J4-4
Net Area, An = (8.50 - (3 * (1.06 + 1/16))) * 0.31 = 1.60 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 58.00 * 1.60 = 41.87 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (8.50 - 1.25) = 7.25 in.
Net Shear Length = 7.25 - (2.50 * (1.06 + 1/16)) = 4.44 in.
Gross Tension Length = [edge dist.] = 1.37 in.
Net Tension Length = (1.37 - (1.31 + 1/16)/2) = 0.68 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 58.00 * 4.44) + (1.00 * 58.00 * 0.68)) = 45.51 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 36.00 * 7.25) + (1.00 * 58.00 * 0.68)) = 46.02 kips
Block Shear = 45.51 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 8.50 = 2.66 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 36.00 * 2.66 = 57.47 kips
Shear Rupture:
Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 8.50 = 2.66 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 58.00 * 2.66 = 69.44 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 2.54
Zgross = 5.65 in^3
Znet = 5.65 in^3
Sgross = 3.77 in^3
Snet = 3.77 in^3
Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 36.00 * 3.77 / 2.54 = 48.13 kips
Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 58.00 * 5.65 / 2.54 = 96.94 kips
Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 8.50 in.
c = 2.54 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 8.50 * 36.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (8.50/2.54)^2 )^0.5) = 0.27
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 36.00 * 1.00 = 32.40 ksi
Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 32.40 * 3.77 / 2.54 = 48.13 kips
Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:
Zgx = 5.65 in^3
Znx = 5.65 in^3
Zgy = 0.21 in^3
Zny = 0.21 in^3
Mrx = vertical reaction * ex = 30.00 * 2.54 = 76.11 kips-in
Mry = axial reaction * ey = 0.00 * 0.27 = 0.00 kips-in
Mcx = (phi) * Zgx * Min(Fy, Fcr) = 0.90 * 5.65 * Min(36.00, 36.00) = 183.18 kips-in
Mcy = (phi) * Zgy * Fy = 0.90 * 0.21 * 36.00 = 6.75 kips-in
Shear Stress on Gross Section = 30.00 / 2.66 = 11.28 ksi
Shear Stress on Net Section = 30.00 / 2.66 = 11.28 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 2.66 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 2.66 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 76.11 / 5.65 = 13.46 ksi
Axial Stress on Net Section due to Moment (shear) = 76.11 / 5.65 = 13.46 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.21 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.21 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 13.46 = 13.46 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 13.46 = 13.46 ksi
Shear Yield Stress Capacity (SYSC) = phi * 0.6 * Fy = 1.00 * 0.60 * 36.00 = 21.60 ksi
Tensile Yield Stress Capacity (TYSC) = phi * Fy = 0.90 * 36.00 = 32.40 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (11.28 / 21.60)^2 + (13.46 / 32.40 )^2 = 0.45 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 58.00 = 26.10 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 58.00 = 43.50 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (11.28 / 26.10)^2 + (13.46 / 43.50 )^2 = 0.28 <= 1.0 (OK)
Angle2
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 8.50 = 2.66 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 36.00 * 2.66 = 57.47 kips
Shear Rupture:
Using AISC 14th Ed. Equation J4-4
Net Area, An = (8.50 - (3 * (1.06 + 1/16))) * 0.31 = 1.60 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 58.00 * 1.60 = 41.87 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (8.50 - 1.25) = 7.25 in.
Net Shear Length = 7.25 - (2.50 * (1.06 + 1/16)) = 4.44 in.
Gross Tension Length = [edge dist.] = 1.37 in.
Net Tension Length = (1.37 - (1.31 + 1/16)/2) = 0.68 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 58.00 * 4.44) + (1.00 * 58.00 * 0.68)) = 45.51 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 36.00 * 7.25) + (1.00 * 58.00 * 0.68)) = 46.02 kips
Block Shear = 45.51 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 8.50 = 2.66 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 36.00 * 2.66 = 57.47 kips
Shear Rupture:
Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 8.50 = 2.66 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 58.00 * 2.66 = 69.44 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 2.54
Zgross = 5.65 in^3
Znet = 5.65 in^3
Sgross = 3.77 in^3
Snet = 3.77 in^3
Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 36.00 * 3.77 / 2.54 = 48.13 kips
Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 58.00 * 5.65 / 2.54 = 96.94 kips
Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 8.50 in.
c = 2.54 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 8.50 * 36.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (8.50/2.54)^2 )^0.5) = 0.27
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 36.00 * 1.00 = 32.40 ksi
Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 32.40 * 3.77 / 2.54 = 48.13 kips
Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:
Zgx = 5.65 in^3
Znx = 5.65 in^3
Zgy = 0.21 in^3
Zny = 0.21 in^3
Mrx = vertical reaction * ex = 30.00 * 2.54 = 76.11 kips-in
Mry = axial reaction * ey = 0.00 * 0.27 = 0.00 kips-in
Mcx = (phi) * Zgx * Min(Fy, Fcr) = 0.90 * 5.65 * Min(36.00, 36.00) = 183.18 kips-in
Mcy = (phi) * Zgy * Fy = 0.90 * 0.21 * 36.00 = 6.75 kips-in
Shear Stress on Gross Section = 30.00 / 2.66 = 11.28 ksi
Shear Stress on Net Section = 30.00 / 2.66 = 11.28 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 2.66 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 2.66 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 76.11 / 5.65 = 13.46 ksi
Axial Stress on Net Section due to Moment (shear) = 76.11 / 5.65 = 13.46 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.21 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.21 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 13.46 = 13.46 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 13.46 = 13.46 ksi
Shear Yield Stress Capacity (SYSC) = phi * 0.6 * Fy = 1.00 * 0.60 * 36.00 = 21.60 ksi
Tensile Yield Stress Capacity (TYSC) = phi * Fy = 0.90 * 36.00 = 32.40 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (11.28 / 21.60)^2 + (13.46 / 32.40 )^2 = 0.45 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 58.00 = 26.10 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 58.00 = 43.50 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (11.28 / 26.10)^2 + (13.46 / 43.50 )^2 = 0.28 <= 1.0 (OK)
Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(114.93 , 114.93) = 114.93 kips
114.93 kips >= Reaction V = 60.00 kips (OK)
Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(83.74 , 83.74) = 83.74 kips
83.74 kips >= Reaction V = 60.00 kips (OK)
Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(91.02 , 91.02) = 91.02 kips
91.02 kips >= Reaction V = 60.00 kips (OK)
Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(114.93 , 114.93) = 114.93 kips
114.93 kips >= Reaction V = 60.00 kips (OK)
Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(138.88 , 138.88) = 138.88 kips
138.88 kips >= Reaction V = 60.00 kips (OK)
Total Beam Side Flexure Yielding Capacity = min (FlexureYieldAngle1/Gage1 Ratio , FlexureYieldAngle2/Gage2 Ratio) = min(96.27 , 96.27) = 96.27 kips
96.27 kips >= Reaction V = 60.00 kips (OK)
Total Beam Side Flexure Rupture Capacity = min (FlexureRuptureAngle1/Gage1 Ratio , FlexureRuptureAngle2/Gage2 Ratio) = min(193.88 , 193.88) = 193.88 kips
193.88 kips >= Reaction V = 60.00 kips (OK)
Total Beam Side Bending Buckling Capacity = min (BendingBucklingAngle1/Gage1 Ratio , BendingBucklingAngle2/Gage2 Ratio) = min(96.27 , 96.27) = 96.27 kips
96.27 kips >= Reaction V = 60.00 kips (OK) |
Angles Welded to Beam:
Angle1 Beam Weld
k = 0.29
ex = 2.54
a = ex / l = 2.54 / 8.50 = 0.30
Loadangle = 0.00 deg
Weld Coefficient using Instantaneous Center of Rotation Method, C = 2.77
Dmax1 using AISC 14th Ed. min(eqn 9-2, tang - 0.06)
= min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06)
= min(0.31 * 58.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06)
= min(5.87, 4.01)
= 4.01
Dmax2 (using AISC 14th Ed. eqn 9-3)
= twbeam * Fubeam / ( Fexx * C1 * 0.09 )
= 0.23 * 65.00 / ( 70.00 * 1.00 * 0.09 )
= 2.47
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 2.47, 12.00)
= 2.47
AISC 14th Ed. J2b.b Required Weld Clearance To Plate Edge, clr = 1/16 in.
Use D = Min(angle thickness - clr, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(2.00, 2.00, 4.00)) = 4.00/16
Weld Strength = phi * weld coefficient * l * D = 0.75 * 2.77 * 8.50 * 2.47 = 43.60 kips
Angle2 Beam Weld
k = 0.29
ex = 2.54
a = ex / l = 2.54 / 8.50 = 0.30
Loadangle = 0.00 deg
Weld Coefficient using Instantaneous Center of Rotation Method, C = 2.77
Dmax1 using AISC 14th Ed. min(eqn 9-2, tang - 0.06)
= min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06)
= min(0.31 * 58.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06)
= min(5.87, 4.01)
= 4.01
Dmax2 (using AISC 14th Ed. eqn 9-3)
= twbeam * Fubeam / ( Fexx * C1 * 0.09 )
= 0.23 * 65.00 / ( 70.00 * 1.00 * 0.09 )
= 2.47
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 2.47, 12.00)
= 2.47
AISC 14th Ed. J2b.b Required Weld Clearance To Plate Edge, clr = 1/16 in.
Use D = Min(angle thickness - clr, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(2.00, 2.00, 4.00)) = 4.00/16
Weld Strength = phi * weld coefficient * l * D = 0.75 * 2.77 * 8.50 * 2.47 = 43.60 kips
Total Welds Shear Strength = min( Angle1 Weld Shear/Gage Ratio at Angle1 , Angle2 Weld Shear/Gage Ratio at Angle2 ) = min ( 87.20, 87.20) = 87.20 kips |