SHEAR PLATE CONNECTION SUMMARY
Filler Beam profile: W18X40
Column profile: W14X120
Slope: 0 deg.
Skew: 90
Vertical Offset: 0
Horizontal Offset: 0
Span: 15 ft.
Reaction, V: 18 kips
Shear Capacity, Rn: 18.3 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Stabilizer plate grade: A572-GR.50
Shear Plate Size: 11.125 in. x 13.500 in. x 0.375 in.
Shear Plate Detailing Height at Support: 13.500 in.
Shear Plate Detailing Width at Support: 7.000 in.
Stabilizer plate size: 12.500 in. x 7.000 in. x 0.625 in.
(Required due to user requirement)
Configuration Geometry:
Welds at shear plate to support: 4/16 FILLET, 4/16 FILLET
Welds at stabilizer plate :
at column flange: 5/16 FILLET, 5/16 FILLET
at column web: 4/16 FILLET, 4/16 FILLET
at shear plate: 4/16 FILLET, 4/16 FILLET
Bolt: 3 rows x 1 column 0.875 in. Diameter A325N_TC bolts
Vertical spacing: 5.5 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 7.62 in.
Beam centerline setback = 7.62 in.
Edge distance at vertical edge of plate: 1.75 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.75 in.
Horizontal distance to first hole: 9.38 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.938 in.
Holes in shear plate: SSL diameter = 0.938 in., slot width = 1.12 in. |
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.22, 0.00)
At Row 1, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam = <15.56, 3.45>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 13.38 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.32/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 13.38 * (0.32/1) * 65.00 = 164.33 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 164.33, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <-15.56, -3.45>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 9.03 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.03 * 0.38 * 65.00 = 132.02 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 132.02, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 25.594) = 21.50 kips/bolt
Bolt Shear Demand to Bearing ratio = 21.50 / 15.94 = 1.35
At Row 2, At Column 1:
Ribolt = 11.35 kips
Ri vector at Beam = <-0.00, 11.35>
Lcsbm at Beam spacing = 4.56 in.
Lcebm at Beam edge = 8.03 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.56 * (0.32/1) * 65.00 = 56.05 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 8.03 * (0.32/1) * 65.00 = 98.66 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(56.05, 98.66, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <0.00, -11.35>
Lcsshpl at Shear Plate spacing = 4.56 in.
Lceshpl at Shear Plate edge = 6.28 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.56 * 0.38 * 65.00 = 66.73 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.28 * 0.38 * 65.00 = 91.86 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(66.73, 91.86, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 25.594) = 21.50 kips/bolt
Bolt Shear Demand to Bearing ratio = 21.50 / 11.35 = 1.89
At Row 3, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam = <-15.56, 3.45>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 1.32 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.32/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.32 * (0.32/1) * 65.00 = 16.26 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 16.26, 21.50) = 16.26 kips/bolt
Ri vector at Shear Plate = <15.56, -3.45>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 1.22 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.22 * 0.38 * 65.00 = 17.79 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 17.79, 25.59) = 17.79 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(16.263, 17.790) = 16.26 kips/bolt
Bolt Shear Demand to Bearing ratio = 16.26 / 15.94 = 1.02
Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
= min(1.00, 1.35, 1.89, 1.02) = 1.00
BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 18.25 = 18.25 kips
Rbv = 18.25 kips >= V = 18.00 kips (OK) |
Gross Area = 0.38 * 13.50 = 5.06 in^2
Net Area = (13.50 - (3 *(0.94 + 1/16))) * 0.38 = 3.94 in^2
Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 50.00 * 5.06 = 101.25 kips
Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 65.00 * 3.94 = 76.78 kips
Block Shear
Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (13.5 - 1.25) = 12.25 in.
Net Shear Length = 12.2 - (2.5 * (0.938 + 0.0625)) = 9.75 in.
Gross Tension Length = (0 + 1.75) = 1.75 in.
Net Tension Length = 1.75 - (0.5 * (1.12 + 0.0625)) = 1.16 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length]))
= 0.50 * 0.38 * ((0.60 * 65.00 * 9.75) + (1.00 * 65.00 * 1.16)) = 85.39 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length]))
= 0.50 * 0.38 * ((0.60 * 50.00 * 12.25) + (1.00 * 65.00 * 1.16)) = 83.00 kips
Block Shear = 83.00 kips
83.00 kips >= Vbm = 18.00 kips (OK)
Flexural and Buckling Strength:
Eccentricity at first line of bolts, e = 9.38 in.
Zgross = 17.09 in^3
Znet = 12.87 in^3
Sgross = 11.39 in^3
Snet = 8.03 in^3
Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 12.87 / 9.38 = 44.61 kips
Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.38 in.
ho = 13.50 in.
c = 9.38 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 13.50 * 50.00^0.5 / (10 * 0.38 * (475.00 + 280.00 * (13.50/9.38)^2 )^0.5) = 0.78
When 0.70 < lambda <= 1.41, Q=1.34 - 0.49 * lambda
Q = 0.96
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 0.96 = 28.78 ksi
Using Eq. 9-6
Buckling = Fcr * Sgross / e = 28.78 * 11.39 / 9.38 = 34.96 kips
Interaction Check of Flexural Yielding, Per AISC 10-5:
Eccentricity at CG of Bolt Group, e = 9.38 in.
Zgross = 17.09
Znet = 12.87
Mr = Vr * e = 18.00 * 9.38 = 168.75 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 50.00 * 17.09 = 512.58 kips-in
Vr = 18.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 50.00 * 5.06 = 101.25 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (18.00 / 101.25)^2 + (168.75 / 512.58)^2 = 0.14 <= 1 (OK)
Note: Mn <= 1.6My by inspection
MAXIMUM PLATE THICKNESS:
No of bolt columns = 1
tp < = db/2 + 1/16 = 0.375 <= 0.5 OK
tw < = db/2 + 1/16 = 0.315 <= 0.5 OK
Leh(plate) >= 2 * db = 1.75 >= 1.75 OK
Leh(bm) >= 2 * db = 1.75 >= 1.75 OK
Maximum Plate Thickness is Not a Limiting Criteria.
STABILIZER PLATE:
Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00 * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 13.50 * 0.38^3 / 9.38^2 = 22.90 kips
Stabilizer Plate Not Required for lateral displacement
Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 18.00 * ((0.31 + 0.38) / 2) = 6.19 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 = ((0.67 * 0.6 * 50.00) - (18.00 / (13.50 * 0.38))) * 0.5 * 13.50 * 0.38^2 = 15.61 kips-in
Stabilizer Plate Not Required for torsional strength |
WELD:
Weld Requirements:
At shear only case:
Weld Length for shear, Lv = 12.000 in.
Shear Load per inch per weld, fv = R/Lv/2 = 18.000 / 12.000 / 2 = 0.750 kips/in/ weld
theta = 0 deg.
cPhi = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 0.750 / (0.500 * 1.856) = 0.808/16
Minimum fillet weld size :
At shear only load case = 0.05 in.
per Table J2.4 = 0.19 in.
5/8tp = 0.23 in.
user preference = 0.25 in.
Dmax1 (using eqn 9-3)
= tshpl * Fushpl / ( Fexx * C1 * 0.088)
= 0.375 * 65.000 / ( 70.000 * 1.000 * 0.088 )
= 3.940
Dmax2 (using eqn 9-3)
= twsupport * Fusupport / ( Fexx * C1 * 0.088 )
= 0.590 * 65.000 / ( 70.000 * 1.000 * 0.088 )
= 6.198
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.940, 6.198, 12.000)
= 3.940
Use weld size
D1 = 4.00
D2 = 4.00
Weld Strength :
Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 12.00 * (3.94 + 3.94) = 87.75 kips
87.75 kips >= Vbm = 18.00 kips (OK) |