BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.86, -0.00)
At Row 1, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam = <15.47, 3.84>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 11.99 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 11.99 * (0.38/1) * 65.00 = 177.72 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 177.72, 25.94) = 25.94 kips/bolt
Ri vector at Shear Plate = <-15.47, -3.84>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 9.47 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.47 * 0.38 * 65.00 = 138.44 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 138.44, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(25.935, 25.594) = 25.59 kips/bolt
Bolt Shear Demand to Bearing ratio = 25.59 / 15.94 = 1.61
At Row 2, At Column 1:
Ribolt = 15.16 kips
Ri vector at Beam = <14.01, 5.79>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 15.24 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 15.24 * (0.38/1) * 65.00 = 225.80 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 225.80, 25.94) = 25.94 kips/bolt
Ri vector at Shear Plate = <-14.01, -5.79>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 9.94 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.94 * 0.38 * 65.00 = 145.40 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 145.40, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(25.935, 25.594) = 25.59 kips/bolt
Bolt Shear Demand to Bearing ratio = 25.59 / 15.16 = 1.69
At Row 3, At Column 1:
Ribolt = 12.82 kips
Ri vector at Beam = <8.04, 9.98>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 11.09 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 11.09 * (0.38/1) * 65.00 = 164.39 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 164.39, 25.94) = 25.94 kips/bolt
Ri vector at Shear Plate = <-8.04, -9.98>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 12.56 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.56 * 0.38 * 65.00 = 183.76 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 183.76, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(25.935, 25.594) = 25.59 kips/bolt
Bolt Shear Demand to Bearing ratio = 25.59 / 12.82 = 2.00
At Row 4, At Column 1:
Ribolt = 12.82 kips
Ri vector at Beam = <-8.04, 9.98>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 2.32 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.32 * (0.38/1) * 65.00 = 34.37 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 34.37, 25.94) = 25.94 kips/bolt
Ri vector at Shear Plate = <8.04, -9.98>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 2.19 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.19 * 0.38 * 65.00 = 31.97 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 31.97, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(25.935, 25.594) = 25.59 kips/bolt
Bolt Shear Demand to Bearing ratio = 25.59 / 12.82 = 2.00
At Row 5, At Column 1:
Ribolt = 15.16 kips
Ri vector at Beam = <-14.01, 5.79>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 1.42 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.42 * (0.38/1) * 65.00 = 21.12 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 21.12, 25.94) = 21.12 kips/bolt
Ri vector at Shear Plate = <14.01, -5.79>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 1.28 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.28 * 0.38 * 65.00 = 18.79 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 18.79, 25.59) = 18.79 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.117, 18.793) = 18.79 kips/bolt
Bolt Shear Demand to Bearing ratio = 18.79 / 15.16 = 1.24
At Row 6, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam = <-15.47, 3.84>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 1.33 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.33 * (0.38/1) * 65.00 = 19.77 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 19.77, 25.94) = 19.77 kips/bolt
Ri vector at Shear Plate = <15.47, -3.84>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 1.22 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.22 * 0.38 * 65.00 = 17.89 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 17.89, 25.59) = 17.89 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(19.774, 17.893) = 17.89 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.89 / 15.94 = 1.12
Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
= min(1.00, 1.61, 1.69, 2.00, 2.00, 1.24, 1.12) = 1.00
BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 39.21 = 39.21 kips
Rbv = 39.21 kips >= V = 30.00 kips (OK) |