Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bb.s.s.00551.00551
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W12X14
Support Girder profile: W21X50
Slope: -0.861 deg.
Skew: 90
Vertical Offset: 1.79
Horizontal Offset: 0
Span: 10 ft.
Reaction, V: 25 kips
Shear Capacity, Rn: 26.9 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Shear Plate Size: 10.875 in. x 5.500 in. x 0.750 in.
Configuration Geometry:
Welds at shear plate to support: 8/16 FILLET, 8/16 FILLET
Bolt: 2 rows x 3 columns 0.875 in. Diameter A325N_TC bolts
Vertical spacing: 3 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 1.02 in.
Beam centerline setback = 1.02 in.
Edge distance at vertical edge of plate: 1.75 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam at top bolt: 2 in.
Edge distance at vertical edge of beam at bottom bolt: 2.05 in.
Edge distance at top edge of beam at column 1: 2 in.
Edge distance at top edge of beam at column 2: NA
Edge distance at top edge of beam at column 3: NA
Top cope depth: 3 in.
Top cope length: 2.5 in.
Horizontal distance to first hole: 3.12 in.
Down distance from top of filler beam flange: 5 in.
Holes in beam web: STD diameter = 0.938 in.
Holes in shear plate: SSL diameter = 0.938 in., slot width = 1.12 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND SHEAR PLATE SIDE:
Bolt Shear Capacity at Shear Load Only:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 6.315 in.
Angle = 0.000 deg.
C = 2.125
Using Table 7-1 to determine (1/omega)rn:
(1/omega)Rn = (1/omega)rn * C = 16.24 * 2.12 = 34.49 kips


Total Vertical Bolt Shear Capacity = 34.49 kips
34.49 kips >= 25.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.75, 0.00)
At Row 1, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <4.80, 15.20>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 1.62 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.62 * (0.20/1) * 65.00 = 12.63 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 12.63, 13.65) = 12.63 kips/bolt
Ri vector at Shear Plate   = <-4.80, -15.20>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 3.97 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.06 * 0.75 * 65.00 = 60.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.97 * 0.75 * 65.00 = 115.99 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(60.33, 115.99, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(12.628, 51.188) = 12.63 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.63 / 15.94 = 0.79

At Row 1, At Column 2:
Ribolt = 14.29 kips
Ri vector at Beam   = <9.30, 10.84>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 5.98 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.98 * (0.20/1) * 65.00 = 46.62 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 46.62, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-9.30, -10.84>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 4.98 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 4.98 * 0.75 * 65.00 = 145.71 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 145.71, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 14.29 = 0.96

At Row 1, At Column 3:
Ribolt = 13.72 kips
Ri vector at Beam   = <10.54, -8.79>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 10.64 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 10.64 * (0.20/1) * 65.00 = 83.01 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 83.01, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-10.54, 8.79>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 1.22 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.22 * 0.75 * 65.00 = 35.66 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 35.66, 51.19) = 35.66 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 35.665) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 13.72 = 0.99

At Row 2, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <-4.80, 15.19>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 4.80 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.80 * (0.20/1) * 65.00 = 37.44 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 37.44, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <4.80, -15.19>
Lcsshpl at Shear Plate spacing  = 2.06 in.
Lceshpl at Shear Plate edge    = 0.82 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.06 * 0.75 * 65.00 = 60.33 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.82 * 0.75 * 65.00 = 23.97 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(60.33, 23.97, 51.19) = 23.97 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 23.965) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.94 = 0.86

At Row 2, At Column 2:
Ribolt = 14.29 kips
Ri vector at Beam   = <-9.30, 10.84>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 6.15 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 6.15 * (0.20/1) * 65.00 = 47.94 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 47.94, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <9.30, -10.84>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 1.03 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.03 * 0.75 * 65.00 = 30.11 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 30.11, 51.19) = 30.11 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 30.111) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 14.29 = 0.96

At Row 2, At Column 3:
Ribolt = 13.72 kips
Ri vector at Beam   = <-10.54, -8.79>
Lcsbm at Beam spacing  = 2.94 in.
Lcebm at Beam edge    = 5.65 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.20/1) * 65.00 = 22.92 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.65 * (0.20/1) * 65.00 = 44.08 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(22.92, 44.08, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <10.54, 8.79>
Lcsshpl at Shear Plate spacing  = 2.87 in.
Lceshpl at Shear Plate edge    = 1.55 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.75 * 65.00 = 84.03 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.55 * 0.75 * 65.00 = 45.26 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(84.03, 45.26, 51.19) = 45.26 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 45.257) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 13.72 = 0.99

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
 = min(1.00, 0.79, 0.96, 0.99, 0.86, 0.96, 0.99) = 0.79

BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 0.79 * 34.49 = 27.33 kips
Rbv = 27.33 kips >= V = 25.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 11.9 - 3 - 0 = 8.9 in.
Gross Area (Shear) = [Web Depth] * tw = 8.90 * 0.20 = 1.78 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (8.90 - (2 * 1.00)) * 0.20 = 1.38 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 1.78 = 35.60 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.38 = 26.91 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.


Buckling and Flexure at Longest Cope (Top Cope Only at Section)
Eccentricity at Section, e = 3.71 in.
If coped at top/bottom flange only and c <= 2d and dc <= d/2, use Eq. 9-7, Fcr = 26210.00 * f * k * (tw/h1)^2 <= Fy

Using Eq. 9-7 through 9-11
tw = 0.20 in.
h1 = 6.27 in.
c = 2.50 in.
When c/h1<=1.0, k=2.2(h1/c)^1.65
k  = 2.20 * (6.27 / 2.50)^1.65 = 10.03
When c/d<=1.0, f=2c/d
f = 2 * (2.50 / 11.90) = 0.42
Fy = 50.00 ksi
Fcr = (1/omega) * 26210.00 * f * k * (tw/h1)^2 = 0.60 * 26210.00 * 0.42 * 10.03 * (0.20 / 6.27)^2 = 67.43 ksi
Fcrmin =1/omega * min(Fcr, Fy) = 30.00 ksi
Snet1 (bolt holes not applicable) = 3.86 in^3
Snet2 (bolt holes applicable) = 3.03 in^3
Znet = 5.31 in^3

Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 30.00 * 3.86 / 3.71 = 31.17 kips

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 3.86 / 3.71 = 31.17 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 5.31 / 3.71 = 46.52 kips


Buckling and Flexure at Furthest Bolt Line within Cope (Top Cope Only at Section)
Eccentricity at Section, e = 3.26 in.
If coped at top/bottom flange only and c <= 2d and dc <= d/2, use Eq. 9-7, Fcr = 26210.00 * f * k * (tw/h1)^2 <= Fy

Using Eq. 9-7 through 9-11
tw = 0.20 in.
h1 = 6.27 in.
c = 2.50 in.
When c/h1<=1.0, k=2.2(h1/c)^1.65
k  = 2.20 * (6.27 / 2.50)^1.65 = 10.03
When c/d<=1.0, f=2c/d
f = 2 * (2.50 / 11.90) = 0.42
Fy = 50.00 ksi
Fcr = (1/omega) * 26210.00 * f * k * (tw/h1)^2 = 0.60 * 26210.00 * 0.42 * 10.03 * (0.20 / 6.27)^2 = 67.43 ksi
Fcrmin =1/omega * min(Fcr, Fy) = 30.00 ksi
Snet1 (bolt holes not applicable) = 3.86 in^3
Snet2 (bolt holes applicable) = 3.03 in^3
Znet = 5.31 in^3

Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 30.00 * 3.86 / 3.26 = 35.53 kips

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 3.86 / 3.26 = 35.53 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 5.31 / 3.26 = 53.01 kips


Section Bending Strength Calculations Summary:

   Coped Beam Buckling and Flexure at Longest Cope (Top Cope Only at Section)
   Buckling : 31.17 >= 25.00 kips (OK)
   Flexural Yielding : 31.17 >= 25.00 kips (OK)
   Flexural Rupture : 46.52 >= 25.00 kips (OK)

   Coped Beam Buckling and Flexure at Furthest Bolt Line within Cope (Top Cope Only at Section)
   Buckling : 35.53 >= 25.00 kips (OK)
   Flexural Yielding : 35.53 >= 25.00 kips (OK)
   Flexural Rupture : 53.01 >= 25.00 kips (OK)
Shear Plate Calcs:
Gross Area = 0.75 * 5.50 = 4.12 in^2
Net Area = (5.50 - (2 *(0.94 + 1/16))) * 0.75 = 2.62 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 50.00 * 4.12 = 82.50 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 65.00 * 2.62 = 51.19 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (5.5 - 1.25) = 4.25 in.
Net Shear Length = 4.25 - (1.5 * (0.938 + 0.0625)) = 2.75 in.
Gross Tension Length = (6 + 1.75) = 7.75 in.
Net Tension Length = 7.75 - (2.5 * (1.12 + 0.0625)) = 4.78 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 65.00 * 2.75) + (0.50 * 65.00 * 4.78)) = 98.49 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 50.00 * 4.25) + (0.50 * 65.00 * 4.78)) = 106.08 kips
Block Shear = 98.49 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (5.5 - 1.25) = 8.50 in.
Net Shear Length = 2 * ( 4.25 - (1.5 * (0.938 + 0.0625)) ) = 5.50 in.
Gross Tension Length = (6 + 1.75) - 1.75 = 6.00 in.
Net Tension Length = 6 - 2 * (1.12 + 0.0625) = 3.62 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 65.00 * 5.50) + (0.50 * 65.00 * 3.62)) = 124.62 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 50.00 * 8.50) + (0.50 * 65.00 * 3.62)) = 139.80 kips
Block Shear = 124.62 kips

98.49 kips >= Vbm = 25.00 kips (OK)

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 3.31 in.
Zgross = 5.67 in^3
Znet   = 3.42 in^3
Sgross = 3.78 in^3
Snet   = 2.55 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 3.42 / 3.31 = 33.55 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.75 in.
ho = 5.50 in.
c = 3.12 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 5.50 * 50.00^0.5 / (10 * 0.75 * (475.00 + 280.00 * (5.50/3.12)^2 )^0.5) = 0.14
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 30.00 * 3.78 / 3.31 = 34.22 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 6.31 in.
Zgross = 5.67
Znet = 3.42
Mr = Vr * e = 25.00 * 6.31 = 157.88 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 50.00 * 5.67 = 170.16 kips-in
Vr = 25.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 50.00 * 4.12 = 82.50 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (25.00 / 82.50)^2 + (157.88 / 170.16)^2 = 0.95 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
tmax = 6 * Mmax / (Fypl * d^2) Eq. 10-3
Mmax = (1/0.9) * Fv * Ab * C' Eq. 10-4
Mmax = (1/0.9) * 54 * 0.60132 * 15.7877 = 569.607 kips-in
tmax = 6 * 569.607 / (50 * 5.5^2) = 2.26 in.
Maximum Plate Thickness is Not a Limiting Criteria.
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 5.500 in.
Shear Load per inch per weld, fv = R/Lv/2 = 25.000 / 5.500 / 2 = 2.273 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 2.273 / (0.500 * 1.856) = 2.449/16

Minimum fillet weld size : 
   At shear only load case = 0.15 in.
   per Table J2.4     = 0.19 in.
   5/8tp              = 0.47 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 0.750 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 7.879 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 0.380 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 3.992 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(7.879, 3.992, 12.000)
 = 3.992 

Use weld size
D1 = 8.00
D2 = 8.00

Weld Strength :

Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 5.50 * (3.99 + 3.99) = 40.76 kips

40.76 kips >= Vbm = 25.00 kips (OK)