BOLT BEARING AT BEAM AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 5.19 in.
Lcebm at Beam edge = 1.34 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.19 * (0.32/2) * 65.00 = 47.80 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.34 * (0.32/2) * 65.00 = 12.38 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.32/2) * 65.00 = 13.82 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(47.80, 12.38, 13.82) = 12.38 kips/bolt
Lcsang1 at Angle 1 spacing = 5.19 in.
Lceang1 at Angle 1 edge = 6.59 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 5.19 * 0.38 * 65.00 = 113.80 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.59 * 0.38 * 65.00 = 144.65 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(113.80, 144.65, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 12.38, 32.91) = 12.38 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 5.19 in.
Lcebm at Beam edge = 7.34 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.19 * (0.32/2) * 65.00 = 47.80 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.34 * (0.32/2) * 65.00 = 67.67 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.32/2) * 65.00 = 13.82 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(47.80, 67.67, 13.82) = 13.82 kips/bolt
Lcsang1 at Angle 1 spacing = 5.19 in.
Lceang1 at Angle 1 edge = 0.59 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 5.19 * 0.38 * 65.00 = 113.80 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.59 * 0.38 * 65.00 = 13.03 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(113.80, 13.03, 32.91) = 13.03 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 13.82, 13.03) = 13.03 kips/bolt
Bearing Capacity at Beam and Angle for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 12.38 + 13.03 = 25.41 kips
BOLT BEARING AT BEAM AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 5.19 in.
Lcebm at Beam edge = 1.34 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.19 * (0.32/2) * 65.00 = 47.80 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.34 * (0.32/2) * 65.00 = 12.38 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.32/2) * 65.00 = 13.82 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(47.80, 12.38, 13.82) = 12.38 kips/bolt
Lcsang2 at Angle 2 spacing = 5.19 in.
Lceang2 at Angle 2 edge = 6.59 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 5.19 * 0.38 * 65.00 = 113.80 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.59 * 0.38 * 65.00 = 144.65 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(113.80, 144.65, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 12.38, 32.91) = 12.38 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 5.19 in.
Lcebm at Beam edge = 7.34 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.19 * (0.32/2) * 65.00 = 47.80 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.34 * (0.32/2) * 65.00 = 67.67 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.32/2) * 65.00 = 13.82 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(47.80, 67.67, 13.82) = 13.82 kips/bolt
Lcsang2 at Angle 2 spacing = 5.19 in.
Lceang2 at Angle 2 edge = 0.59 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 5.19 * 0.38 * 65.00 = 113.80 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.59 * 0.38 * 65.00 = 13.03 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(113.80, 13.03, 32.91) = 13.03 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 13.82, 13.03) = 13.03 kips/bolt
Bearing Capacity at Beam and Angle for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 12.38 + 13.03 = 25.41 kips
BEARING AT BEAM AND ANGLE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv
= Min(Sum{ Bearing at side 1 [(Row)i,(Column)i] } / gage1 ratio,
Sum{ Bearing at side 2 [(Row)i,(Column)i] } / gage2 ratio )
= Min( 25.41/ 0.50, 25.41/ 0.50 ) = 50.81 kips
Rbv = 50.81 kips >= Reaction V = 29.00 kips (OK)
BOLT BEARING AT SUPPORT AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 5.19 in.
Lcesupp at Support edge = 17.84 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.19 * (0.55/2) * 65.00 = 83.46 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 17.84 * (0.55/2) * 65.00 = 287.07 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.55/2) * 65.00 = 24.13 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(83.46, 287.07, 24.13) = 24.13 kips/bolt
Lcsang1 at Angle 1 spacing = 5.19 in.
Lceang1 at Angle 1 edge = 0.59 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 5.19 * 0.38 * 65.00 = 113.80 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.59 * 0.38 * 65.00 = 13.03 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(113.80, 13.03, 32.91) = 13.03 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 24.13, 13.03) = 13.03 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 5.19 in.
Lcesupp at Support edge = 11.84 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.19 * (0.55/2) * 65.00 = 83.46 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 11.84 * (0.55/2) * 65.00 = 190.54 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.55/2) * 65.00 = 24.13 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(83.46, 190.54, 24.13) = 24.13 kips/bolt
Lcsang1 at Angle 1 spacing = 5.19 in.
Lceang1 at Angle 1 edge = 6.59 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 5.19 * 0.38 * 65.00 = 113.80 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.59 * 0.38 * 65.00 = 144.65 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(113.80, 144.65, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 24.13, 32.91) = 17.89 kips/bolt
Bearing Capacity at Support and Angle 1 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 13.03 + 17.89 = 30.92 kips
BOLT BEARING AT SUPPORT AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 5.19 in.
Lcesupp at Support edge = 17.84 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.19 * (0.55/2) * 65.00 = 83.46 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 17.84 * (0.55/2) * 65.00 = 287.07 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.55/2) * 65.00 = 24.13 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(83.46, 287.07, 24.13) = 24.13 kips/bolt
Lcsang2 at Angle 2 spacing = 5.19 in.
Lceang2 at Angle 2 edge = 0.59 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 5.19 * 0.38 * 65.00 = 113.80 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.59 * 0.38 * 65.00 = 13.03 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(113.80, 13.03, 32.91) = 13.03 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 24.13, 13.03) = 13.03 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 5.19 in.
Lcesupp at Support edge = 11.84 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.19 * (0.55/2) * 65.00 = 83.46 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 11.84 * (0.55/2) * 65.00 = 190.54 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.55/2) * 65.00 = 24.13 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(83.46, 190.54, 24.13) = 24.13 kips/bolt
Lcsang2 at Angle 2 spacing = 5.19 in.
Lceang2 at Angle 2 edge = 6.59 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 5.19 * 0.38 * 65.00 = 113.80 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.59 * 0.38 * 65.00 = 144.65 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(113.80, 144.65, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 24.13, 32.91) = 17.89 kips/bolt
Bearing Capacity at Support and Angle 2 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 13.03 + 17.89 = 30.92 kips
BEARING AT SUPPORT AND ANGLES SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv1 = Sum{ [(Row)i,(Column)i] } / gage1 ratio = 30.92 / 0.50 = 61.84 kips
Bearing Capacity at Vertical Shear Load Only, Rbv2 = Sum{ [(Row)i,(Column)i] } / gage2 ratio = 30.92 / 0.50 = 61.84 kips
Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(61.84, 61.84) = 61.84 kips
61.84 kips >= 29.00 kips (OK) |
Angle1
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 8.00 = 3.00 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.00 = 90.00 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (8.00 - (2 * (0.81 + 1/16))) * 0.38 = 2.34 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.34 = 68.56 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (8.00 - 1.00) = 7.00 in.
Net Shear Length = 7.00 - (1.50 * (0.81 + 1/16)) = 5.69 in.
Gross Tension Length = [edge dist.] = 1.41 in.
Net Tension Length = (1.41 - (1.00 + 1/16)/2) = 0.88 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 65.00 * 5.69) + (1.00 * 65.00 * 0.88)) = 78.41 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 50.00 * 7.00) + (1.00 * 65.00 * 0.88)) = 75.08 kips
Block Shear = 75.08 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 8.00 = 3.00 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.00 = 90.00 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (8.00 - (2 * (0.81 + 1/16))) * 0.38 = 2.34 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.34 = 68.56 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (8.00 - 1.00) = 7.00 in.
Net Shear Length = 7.00 - (1.50 * (0.81 + 1/16) = 5.69 in.
Gross Tension Length = [edge dist.] = 1.50 in.
Net Tension Length = (1.50 - (0.81 + 1/16)/2) = 1.06 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 65.00 * 5.69) + (1.00 * 65.00 * 1.06)) = 81.81 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 50.00 * 7.00) + (1.00 * 65.00 * 1.06)) = 78.49 kips
Block Shear = 78.49 kips
Block Shear for Axial T/C is not required.
Angle2
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 8.00 = 3.00 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.00 = 90.00 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (8.00 - (2 * (0.81 + 1/16))) * 0.38 = 2.34 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.34 = 68.56 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (8.00 - 1.00) = 7.00 in.
Net Shear Length = 7.00 - (1.50 * (0.81 + 1/16)) = 5.69 in.
Gross Tension Length = [edge dist.] = 1.41 in.
Net Tension Length = (1.41 - (1.00 + 1/16)/2) = 0.88 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 65.00 * 5.69) + (1.00 * 65.00 * 0.88)) = 78.41 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 50.00 * 7.00) + (1.00 * 65.00 * 0.88)) = 75.08 kips
Block Shear = 75.08 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 8.00 = 3.00 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.00 = 90.00 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (8.00 - (2 * (0.81 + 1/16))) * 0.38 = 2.34 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.34 = 68.56 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (8.00 - 1.00) = 7.00 in.
Net Shear Length = 7.00 - (1.50 * (0.81 + 1/16) = 5.69 in.
Gross Tension Length = [edge dist.] = 1.50 in.
Net Tension Length = (1.50 - (0.81 + 1/16)/2) = 1.06 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 65.00 * 5.69) + (1.00 * 65.00 * 1.06)) = 81.81 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 50.00 * 7.00) + (1.00 * 65.00 * 1.06)) = 78.49 kips
Block Shear = 78.49 kips
Block Shear for Axial T/C is not required.
Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(180.00 , 180.00) = 180.00 kips
180.00 kips >= Reaction V = 29.00 kips (OK)
Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(137.11 , 137.11) = 137.11 kips
137.11 kips >= Reaction V = 29.00 kips (OK)
Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(150.17 , 150.17) = 150.17 kips
150.17 kips >= Reaction V = 29.00 kips (OK)
Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(180.00 , 180.00) = 180.00 kips
180.00 kips >= Reaction V = 29.00 kips (OK)
Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(137.11 , 137.11) = 137.11 kips
137.11 kips >= Reaction V = 29.00 kips (OK)
Total Beam Side Vertical Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(156.98 , 156.98) = 156.98 kips
156.98 kips >= Reaction V = 29.00 kips (OK) |