|
|
Summary Reports: | Job Standard Summary | Job Sample Calcs Report | B+Op Connection Comparison Report | Standard Connection Cost Report Job Preferences Report | No Connections Summary | No Connections Detailed | No Connections Reference Map | |||||||||
Shear and Axial Reports: | Shear Plate: | Specs | Strengths (Shear Only Connections) | Welds | Doublers | Connection Cost Report | ||||
Strengths (Shear & Axial Connections) | ||||||||||
Single Angle: | Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
Double Angle Reports: | Support Side Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
Beam Side Specs | ||||||||||
End Plate Reports: | Specs | Strengths (Shear & Axial) | Welds | Connection Cost Report | ||||||
Moment Reports: | Specs | Support Strengths | Beam Flange Welds | Connection Cost Report | ||||||
Moment Plates: | Specs | Strengths | Welds | |||||||
Column Stiffeners: | Specs | Strengths | Welds | |||||||
Column Web Doublers: | Specs | Strengths | Welds | |||||||
Shear Plate: | Specs | Strengths | Welds | |||||||
Double Angle: | Support Side Specs | Strengths | Welds | |||||||
Beam Side Specs | ||||||||||
Connection Number: |
bb.2bb.sa.00001.00001 |
Main Calcs: |
DOUBLE ANGLES Bolted to Beam, Bolted to Support CONNECTION SUMMARY Girder profile: W30X108 Filler Beam profile: W27X94 Slope: 0.00 deg. Skew: 90.00 Vertical Offset: 0.00 Horizontal Offset: 0.00 Span: 39.42 ft. Reaction, V: 70.00 kips Axial Load T/C: 10/-10 kips Shear Capacity, Rn: 127.80 kips Axial Capacity T/C: 23.15 / -23.15 kips Design/Reference according to AISC 14th Ed. - LRFD Beam material grade: A992 Support material grade: A992 Angle material grade: A529-GR.50 Angle1 Profile: L5X3-1/2X5/16 Length = 11.500 in. Beam side bolts: 4 rows x 1 column 0.875 in. Diameter A325N_TC bolts Beam side bolt vertical spacing: 3 in. Support side bolts: 4 rows x 1 column 0.875 in. Diameter A325N_TC bolts Support side bolt vertical spacing: 3 in. Angle2 Profile: L5X3-1/2X5/16 Length = 11.500 in. Beam side bolts: 4 rows x 1 column 0.875 in. Diameter A325N_TC bolts Beam side bolt vertical spacing: 3 in. Support side bolts: 4 rows x 1 column 0.875 in. Diameter A325N_TC bolts Support side bolt vertical spacing: 3 in. Configuration Geometry: Beam setback = 0.5 in. Edge distance at vertical edge of beam: 1.5 in. Edge distance at top edge of beam: 1.75 in. Top cope depth: 1.5 in. Top cope length: 5 in. Horizontal distance to first hole: 2 in. Bolted Angle Leg At Beam : Angle 1 Leg Distances : Down distance from top of filler beam flange : 3.25 in. Edge distance at vertical edge : 1.50 in. Edge distance at top edge : 1.25 in. Edge distance at bottom edge : 1.25 in. Angle 2 Leg Distances : Down distance from top of filler beam flange : 3.25 in. Edge distance at vertical edge : 1.50 in. Edge distance at top edge : 1.25 in. Edge distance at bottom edge : 1.25 in. Bolted Angle Leg At Support : Angle 1 Leg Distances : Down distance from top of filler beam flange : 3.25 in. Gage at Bolt : 3.5 in. Edge distance at vertical edge : 1.75 in. Edge distance at top edge : 1.25 in. Edge distance at bottom edge : 1.25 in. Angle 2 Leg Distances : Down distance from top of filler beam flange : 3.25 in. Gage at Bolt : 3.5 in. Edge distance at vertical edge : 1.75 in. Edge distance at top edge : 1.25 in. Edge distance at bottom edge : 1.25 in. Holes in Beam Web : STD diameter = 0.9375 in. Holes in Beam Angle Leg : STD diameter = 0.9375 in. Holes in Support Girder : STD diameter = 0.9375 in. Holes in Support Angle Leg : SSL slot width = 0.9375 in., slot length = 1.125 in. |
Bolt Strength Calcs: |
BOLT SHEAR CAPACITY AT BEAM AND ANGLE 1 SIDE: At Angle 1 side: Bolt Shear Capacity at Shear Load Only: C = no of bolts = 4.000 Using Table 7-1 to determine (phi)rn: (phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips Bolt Shear Capacity at Combined Shear and Axial Load: C = no of bolts = 4.000 Using Table 7-1 to determine (phi)rn: (phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips Shear Capacity = (phi)Rn * cos(Angle) = 97.42 * 0.99 = 96.44 kips Axial Capacity = (phi)Rn * sin(Angle) = 97.42 * 0.14 = 13.78 kips BOLT SHEAR CAPACITY AT BEAM AND ANGLE 2 SIDE: At Angle 2 side: Bolt Shear Capacity at Shear Load Only: C = no of bolts = 4.000 Using Table 7-1 to determine (phi)rn: (phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips Bolt Shear Capacity at Combined Shear and Axial Load: C = no of bolts = 4.000 Using Table 7-1 to determine (phi)rn: (phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips Shear Capacity = (phi)Rn * cos(Angle) = 97.42 * 0.99 = 96.44 kips Axial Capacity = (phi)Rn * sin(Angle) = 97.42 * 0.14 = 13.78 kips Total Vertical Bolt Shear Capacity = = min(Shear Load Only at Angle 1 side/gage1 ratio, Shear and Axial Load at Angle 1 side/gage1 ratio, Shear Load Only at Angle 2 side/gage2 ratio, Shear and Axial Load at Angle 2 side/gage2 ratio) = = min(97.42/0.5, 96.44/0.5, 97.42/0.5, 96.44/0.5) = 192.87 kips 192.87 kips >= 70.00 kips (OK) Bolt Shear Axial Capacity at Shear and Axial Load = = min(Shear and Axial Load at Angle 1 side/gage1 ratio,Shear and Axial Load at Angle 2 side/gage2 ratio) = min(13.78/0.5,13.78/0.5) = 27.55 kips 27.55 kips >= 10.00 kips (OK) BOLT SHEAR CAPACITY AT SUPPORT AND ANGLE 1 SIDE: Bolt Shear Capacity at Shear and Tension Load: Gage ratio: gage1 ratio = gage2 / (gage1 + gage2) = 3.5 / (3.5 + 3.5) = 0.5 Required tension stress (frt) = gage1 ratio * axial reaction / bolt row count / bolt area = 0.500 * 10.000 / 4 / 0.601 = 2.079 ksi Required shear stress (frv) = gage1 ratio * vertical reaction / bolt row count / bolt area = 0.50 * 70.00 / 4 / 0.60 = 14.55 ksi Required tension stress (frt) = 2.079 ksi is not greater than 30% of total available Tension Stress (0.3 * Fnt = 27.000 ksi) Required shear stress (frv) = 14.551 ksi is not greater than 30% of total available Shear Stress (0.3 * Fnv = 16.200 ksi) F'nv = 54.000 ksi C = no of bolts = 4.000 Using Table 7-1 to determine (phi)rn: (phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips BOLT SHEAR CAPACITY AT SUPPORT AND ANGLE 2 SIDE: Bolt Shear Capacity at Shear and Tension Load: Gage ratio: gage2 ratio = gage1 / (gage1 + gage2) = 3.5 / (3.5 + 3.5) = 0.5 Required tension stress (frt) = gage2 ratio * axial reaction / bolt row count / bolt area = 0.500 * 10.000 / 4 / 0.601 = 2.079 ksi Required shear stress (frv) = gage2 ratio * vertical reaction / bolt row count / bolt area = 0.50 * 70.00 / 4 / 0.60 = 14.55 ksi Required tension stress (frt) = 2.079 ksi is not greater than 30% of total available Tension Stress (0.3 * Fnt = 27.000 ksi) Required shear stress (frv) = 14.551 ksi is not greater than 30% of total available Shear Stress (0.3 * Fnv = 16.200 ksi) F'nv = 54.000 ksi C = no of bolts = 4.000 Using Table 7-1 to determine (phi)rn: (phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips Vertical Bolt Shear Capacity at Support and Angle 1 = = Shear and Tension Load Angle 1 side/gage1 ratio = 97.42/0.5 = 194.83 kips Vertical Bolt Shear Capacity at Support and Angle 2 = = Shear and Tension Load Angle 2 side/gage2 ratio = 97.42/0.5 = 194.83 kips Total Support Side Bolt Shear Capacity = min(194.83, 194.83) = 194.83 kips 194.83 kips >= 70.00 kips (OK) |
Bolt Bearing Calcs: |
BOLT BEARING AT BEAM AND ANGLE 1 SIDE Vertical Shear Only Load Case: At Row 1, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 1.28 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.28 * (0.49/2) * 65.00 = 18.36 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 18.36, 25.08) = 18.36 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 9.78 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.78 * 0.31 * 65.00 = 179.10 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 179.10, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 18.364, 32.044) = 18.36 kips/bolt At Row 2, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 4.28 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.28 * (0.49/2) * 65.00 = 61.36 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 61.36, 25.08) = 25.08 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 6.78 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.78 * 0.31 * 65.00 = 124.17 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 124.17, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt At Row 3, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 7.28 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.28 * (0.49/2) * 65.00 = 104.36 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 104.36, 25.08) = 25.08 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 3.78 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.78 * 0.31 * 65.00 = 69.24 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 69.24, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt At Row 4, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 10.28 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 10.28 * (0.49/2) * 65.00 = 147.36 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 147.36, 25.08) = 25.08 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 0.78 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.78 * 0.31 * 65.00 = 14.31 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 14.31, 32.04) = 14.31 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 14.305) = 14.31 kips/bolt Bearing Capacity at Beam and Angle for vertical shear only = Sum{ Bearing At [(Row)i,(Column)i] } = 18.36 + 24.35 + 24.35 + 14.31 = 81.38 kips BOLT BEARING AT BEAM AND ANGLE 2 SIDE Vertical Shear Only Load Case: At Row 1, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 1.28 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.28 * (0.49/2) * 65.00 = 18.36 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 18.36, 25.08) = 18.36 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 9.78 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.78 * 0.31 * 65.00 = 179.10 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 179.10, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 18.364, 32.044) = 18.36 kips/bolt At Row 2, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 4.28 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.28 * (0.49/2) * 65.00 = 61.36 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 61.36, 25.08) = 25.08 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 6.78 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.78 * 0.31 * 65.00 = 124.17 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 124.17, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt At Row 3, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 7.28 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.28 * (0.49/2) * 65.00 = 104.36 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 104.36, 25.08) = 25.08 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 3.78 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.78 * 0.31 * 65.00 = 69.24 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 69.24, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt At Row 4, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 10.28 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 10.28 * (0.49/2) * 65.00 = 147.36 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 147.36, 25.08) = 25.08 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 0.78 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.78 * 0.31 * 65.00 = 14.31 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 14.31, 32.04) = 14.31 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 14.305) = 14.31 kips/bolt Bearing Capacity at Beam and Angle for vertical shear only = Sum{ Bearing At [(Row)i,(Column)i] } = 18.36 + 24.35 + 24.35 + 14.31 = 81.38 kips BOLT BEARING AT BEAM AND ANGLE 1 SIDE Vertical Shear and Tension Load Case: At Row 1, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 1.30 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.30 * (0.49/2) * 65.00 = 18.62 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 18.62, 25.08) = 18.62 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 9.89 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.89 * 0.31 * 65.00 = 181.01 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 181.01, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 18.619, 32.044) = 18.62 kips/bolt At Row 2, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 4.33 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.33 * (0.49/2) * 65.00 = 62.05 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 62.05, 25.08) = 25.08 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 6.85 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.85 * 0.31 * 65.00 = 125.52 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 125.52, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt At Row 3, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 7.36 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.36 * (0.49/2) * 65.00 = 105.49 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 105.49, 25.08) = 25.08 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 3.82 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.82 * 0.31 * 65.00 = 70.03 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 70.03, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt At Row 4, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 10.14 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 10.14 * (0.49/2) * 65.00 = 145.30 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 145.30, 25.08) = 25.08 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 0.79 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.79 * 0.31 * 65.00 = 14.54 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 14.54, 32.04) = 14.54 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 14.538) = 14.54 kips/bolt Bearing Capacity at Beam and Angle for vertical and axial tension = Sum{ Bearing At [(Row)i,(Column)i] } = 18.62 + 24.35 + 24.35 + 14.54 = 81.86 kips BOLT BEARING AT BEAM AND ANGLE 2 SIDE Vertical Shear and Tension Load Case: At Row 1, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 1.30 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.30 * (0.49/2) * 65.00 = 18.62 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 18.62, 25.08) = 18.62 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 9.89 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.89 * 0.31 * 65.00 = 181.01 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 181.01, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 18.619, 32.044) = 18.62 kips/bolt At Row 2, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 4.33 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.33 * (0.49/2) * 65.00 = 62.05 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 62.05, 25.08) = 25.08 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 6.85 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.85 * 0.31 * 65.00 = 125.52 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 125.52, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt At Row 3, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 7.36 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.36 * (0.49/2) * 65.00 = 105.49 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 105.49, 25.08) = 25.08 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 3.82 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.82 * 0.31 * 65.00 = 70.03 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 70.03, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt At Row 4, At Column 1: (phi)Rnbolt = 24.35 kips Lcsbm at Beam spacing = 2.06 in. Lcebm at Beam edge = 10.14 in. (phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt (phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 10.14 * (0.49/2) * 65.00 = 145.30 kips/bolt (phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 145.30, 25.08) = 25.08 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 0.79 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.79 * 0.31 * 65.00 = 14.54 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 14.54, 32.04) = 14.54 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 14.538) = 14.54 kips/bolt Bearing Capacity at Beam and Angle for vertical and axial tension = Sum{ Bearing At [(Row)i,(Column)i] } = 18.62 + 24.35 + 24.35 + 14.54 = 81.86 kips BEARING AT BEAM AND ANGLE SIDE SUMMARY: Bearing Capacity at Vertical Shear Load Only, Rbv1 = Min(Sum{ Bearing at side 1 [(Row)i,(Column)i] } / gage1 ratio, Sum{ Bearing at side 2 [(Row)i,(Column)i] } / gage2 ratio ) = Min( 81.38/ 0.50, 81.38/ 0.50 ) = 162.76 kips Bearing Capacity at Vertical and Axial Tension Load, Rbvt = Min(Sum{ Bearing at side 1 [(Row)i,(Column)i] } / gage1 ratio, Sum{ Bearing at side 2 [(Row)i,(Column)i] } / gage2 ratio ) = Min( 81.86/ 0.50, 81.86/ 0.50 ) = 163.73 kips Vertical Bearing Capacity at shear and axial load, Rbv2 = Rbvt * cos(Angle) = 163.73 * cos(8.13) = 162.08 kips Axial Bearing Capacity at shear and axial load, Rba = Rbvt * sin(Angle) = 163.73 * sin(8.13) = 23.15 kips Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(162.76, 162.08) = 162.08 kips Rbv = 162.08 kips >= Reaction V = 70.00 kips (OK) Rba = 23.15 kips >= Axial T/C = 10.00 kips (OK) BOLT BEARING AT SUPPORT AND ANGLE 1 SIDE Vertical Shear Only Load Case: At Row 1, At Column 1: (phi)Rnbolt = 24.35 kips Lcssupp at Support spacing = 2.06 in. Lcesupp at Support edge = 26.08 in. (phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt (phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 26.08 * (0.55/1) * 65.00 = 831.56 kips/bolt (phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 831.56, 55.80) = 55.80 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 0.78 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.78 * 0.31 * 65.00 = 14.31 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 14.31, 32.04) = 14.31 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(24.35, 55.796, 14.305) = 14.31 kips/bolt At Row 2, At Column 1: (phi)Rnbolt = 24.35 kips Lcssupp at Support spacing = 2.06 in. Lcesupp at Support edge = 23.08 in. (phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt (phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 23.08 * (0.55/1) * 65.00 = 735.91 kips/bolt (phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 735.91, 55.80) = 55.80 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 3.78 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.78 * 0.31 * 65.00 = 69.24 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 69.24, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt At Row 3, At Column 1: (phi)Rnbolt = 24.35 kips Lcssupp at Support spacing = 2.06 in. Lcesupp at Support edge = 20.08 in. (phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt (phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 20.08 * (0.55/1) * 65.00 = 640.26 kips/bolt (phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 640.26, 55.80) = 55.80 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 6.78 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.78 * 0.31 * 65.00 = 124.17 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 124.17, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt At Row 4, At Column 1: (phi)Rnbolt = 24.35 kips Lcssupp at Support spacing = 2.06 in. Lcesupp at Support edge = 17.08 in. (phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt (phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 17.08 * (0.55/1) * 65.00 = 544.61 kips/bolt (phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 544.61, 55.80) = 55.80 kips/bolt Lcsang1 at Angle 1 spacing = 2.06 in. Lceang1 at Angle 1 edge = 9.78 in. (phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.78 * 0.31 * 65.00 = 179.10 kips/bolt (phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 179.10, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt Bearing Capacity at Support and Angle 1 for vertical shear only = Sum{ Bearing At [(Row)i,(Column)i] } = 14.31 + 24.35 + 24.35 + 24.35 = 87.37 kips BOLT BEARING AT SUPPORT AND ANGLE 2 SIDE Vertical Shear Only Load Case: At Row 1, At Column 1: (phi)Rnbolt = 24.35 kips Lcssupp at Support spacing = 2.06 in. Lcesupp at Support edge = 26.08 in. (phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt (phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 26.08 * (0.55/1) * 65.00 = 831.56 kips/bolt (phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 831.56, 55.80) = 55.80 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 0.78 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.78 * 0.31 * 65.00 = 14.31 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 14.31, 32.04) = 14.31 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(24.35, 55.796, 14.305) = 14.31 kips/bolt At Row 2, At Column 1: (phi)Rnbolt = 24.35 kips Lcssupp at Support spacing = 2.06 in. Lcesupp at Support edge = 23.08 in. (phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt (phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 23.08 * (0.55/1) * 65.00 = 735.91 kips/bolt (phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 735.91, 55.80) = 55.80 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 3.78 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.78 * 0.31 * 65.00 = 69.24 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 69.24, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt At Row 3, At Column 1: (phi)Rnbolt = 24.35 kips Lcssupp at Support spacing = 2.06 in. Lcesupp at Support edge = 20.08 in. (phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt (phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 20.08 * (0.55/1) * 65.00 = 640.26 kips/bolt (phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 640.26, 55.80) = 55.80 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 6.78 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.78 * 0.31 * 65.00 = 124.17 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 124.17, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt At Row 4, At Column 1: (phi)Rnbolt = 24.35 kips Lcssupp at Support spacing = 2.06 in. Lcesupp at Support edge = 17.08 in. (phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt (phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 17.08 * (0.55/1) * 65.00 = 544.61 kips/bolt (phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 544.61, 55.80) = 55.80 kips/bolt Lcsang2 at Angle 2 spacing = 2.06 in. Lceang2 at Angle 2 edge = 9.78 in. (phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt (phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.78 * 0.31 * 65.00 = 179.10 kips/bolt (phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 179.10, 32.04) = 32.04 kips/bolt (phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt Bearing Capacity at Support and Angle 2 for vertical shear only = Sum{ Bearing At [(Row)i,(Column)i] } = 14.31 + 24.35 + 24.35 + 24.35 = 87.37 kips BEARING AT SUPPORT AND ANGLES SUMMARY: Bearing Capacity at Vertical Shear Load Only, Rbv1 = Sum{ [(Row)i,(Column)i] } / gage1 ratio = 87.37 / 0.50 = 174.74 kips Bearing Capacity at Vertical Shear Load Only, Rbv2 = Sum{ [(Row)i,(Column)i] } / gage2 ratio = 87.37 / 0.50 = 174.74 kips Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(174.74, 174.74) = 174.74 kips 174.74 kips >= 70.00 kips (OK) |
Beam Strength Calcs: |
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 26.9 - 1.5 - 0 = 25.4 in. Gross Area (Shear) = [Web Depth] * tw = 25.40 * 0.49 = 12.45 in^2 Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw = (25.40 - (4 * 1.00)) * 0.49 = 10.49 in^2 Using Eq.J4-3: Shear Yielding = (phi) * 0.6 * Fybeam * [Gross Area] = 1.00 * 0.6 * 50.00 * 12.45 = 373.38 kips Using Eq.J4-4: Shear Rupture = (phi) * 0.6 * Fubeam * [Net Area] = 0.75 * 0.6 * 65.00 * 10.49 = 306.72 kips Block Shear Using Eq.J4-5: Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block Shear (1) Gross Shear Length = [edge dist. at beam edge] + ([# rows - 1] * [spacing]) = 1.75 + 9 = 10.75 in. Net Shear Length = Gross Shear Length - (# rows - 0.5) * (hole size + 0.0625) = 10.8 - (4 - 0.5) * 1 = 7.25 in. Gross Tension Length = [edge dist. at beam edge] + ([# cols - 1] * [spacing]) = 1.5 + (1 - 1) * 3 = 1.50 in. Net Tension Length = Gross Tension Length - (# cols - 0.5) * (hole size + 0.0625) = 1.5 - (1 - 0.5) * 1 = 1.00 in. 1. (phi) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length])) = 0.75 * 0.49 * ((0.60 * 65.00 * 7.25) + (1.00 * 65.00 * 1.00)) = 127.80 kips 2. (phi) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length])) = 0.75 * 0.49 * ((0.60 * 50.00 * 10.75) + (1.00 * 65.00 * 1.00)) = 142.41 kips Block Shear = 127.80 kips Block Shear (1) Total = Block Shear (1) = 127.80 kips 127.80 kips >= Reaction V = 70.00 kips (OK) Block Shear (1) Axial Gross Shear Length = [edge dist. at beam edge] + ([# cols - 1] * [spacing]) = 1.5 + (1 - 1) * 3 = 1.50 in. Net Shear Length = Gross Tension Length - (# cols - 0.5) * (hole size + 0.0625) = 1.5 - (1 - 0.5) * 1 = 1.00 in. Gross Tension Length = [edge dist. at beam edge] + ([# rows - 1] * [spacing]) = 1.75 + 9 = 10.75 in. Net Tension Length = Gross Shear Length - (# rows - 0.5) * (hole size + 0.0625) = 10.8 - (4 - 0.5) * 1 = 7.25 in. 1. (phi) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length])) = 0.75 * 0.49 * ((0.60 * 65.00 * 1.00) + (1.00 * 65.00 * 7.25)) = 187.52 kips 2. (phi) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length])) = 0.75 * 0.49 * ((0.60 * 50.00 * 1.50) + (1.00 * 65.00 * 7.25)) = 189.73 kips Block Shear = 187.52 kips Block Shear (1) Axial Shear Total = Block Shear (1) Axial = 187.52 kips Block Shear (2) Axial Gross Shear Length = 2 * (1.5 + 0) = 3.00 in. Net Shear Length = 2 * (1.5 + 0 - (0.5 * 1)) = 2.00 in. Gross Tension Length = 3 * 3 = 9.00 in. Net Tension Length = 9 - (3 * (1)) = 6.00 in. 1. (phi) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length])) = 0.75 * 0.49 * ((0.60 * 65.00 * 2.00) + (1.00 * 65.00 * 6.00)) = 171.99 kips 2. (phi) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length])) = 0.75 * 0.49 * ((0.60 * 50.00 * 3.00) + (1.00 * 65.00 * 6.00)) = 176.40 kips Block Shear = 171.99 kips Block Shear Axial Total = Min(Block Shear (1) Axial total, Block Shear (2) Axial total) = Min(187.52 , 171.99) = 171.99 kips 171.99 kips >= Axial T = 10.00 kips (OK) At Axial Loading: Check Shear and Tension Interaction Block Shear: (70.00/127.80)^2 + (10.00/171.99)^2 = 0.30 <= 1 (OK) Buckling and Flexure at Longest Cope (Top Cope Only at Section) Eccentricity at Section, e = 5.77 in. If coped at top/bottom flange only and c <= 2d and dc <= d/2, use Eq. 9-7, Fcr = 26210.00 * f * k * (tw/h1)^2 <= Fy Using Eq. 9-7 through 9-11 tw = 0.49 in. h1 = 17.17 in. c = 5.00 in. When c/h1<=1.0, k=2.2(h1/c)^1.65 k = 2.20 * (17.17 / 5.00)^1.65 = 16.85 When c/d<=1.0, f=2c/d f = 2 * (5.00 / 26.90) = 0.37 Fy = 50.00 ksi Fcr = (phi) * 26210.00 * f * k * (tw/h1)^2 = 0.90 * 26210.00 * 0.37 * 16.85 * (0.49 / 17.17)^2 = 120.31 ksi Fcrmin =phi * min(Fcr, Fy) = 45.00 ksi Snet1 (bolt holes not applicable) = 78.94 in^3 Snet2 (bolt holes applicable) = 78.94 in^3 Znet = 140.76 in^3 Using Eq. 9-6 Buckling = Fcr * Snet1 / e = 45.00 * 78.94 / 5.77 = 615.40 kips Using Eq. 9-19 Flexural Yielding = (phi) * Fy * Snet1 / e = 0.90 * 50.00 * 78.94 / 5.77 = 615.40 kips Using Eq. 9-4 Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 140.76 / 5.77 = 1188.79 kips Buckling and Flexure at Furthest Bolt Line within Cope (Top Cope Only at Section) Eccentricity at Section, e = 2.27 in. If coped at top/bottom flange only and c <= 2d and dc <= d/2, use Eq. 9-7, Fcr = 26210.00 * f * k * (tw/h1)^2 <= Fy Using Eq. 9-7 through 9-11 tw = 0.49 in. h1 = 18.39 in. c = 5.00 in. When c/h1<=1.0, k=2.2(h1/c)^1.65 k = 2.20 * (18.39 / 5.00)^1.65 = 18.87 When c/d<=1.0, f=2c/d f = 2 * (5.00 / 26.90) = 0.37 Fy = 50.00 ksi Fcr = (phi) * 26210.00 * f * k * (tw/h1)^2 = 0.90 * 26210.00 * 0.37 * 18.87 * (0.49 / 18.39)^2 = 117.45 ksi Fcrmin =phi * min(Fcr, Fy) = 45.00 ksi Snet1 (bolt holes not applicable) = 78.94 in^3 Snet2 (bolt holes applicable) = 58.37 in^3 Znet = 111.99 in^3 Using Eq. 9-6 Buckling = Fcr * Snet1 / e = 45.00 * 78.94 / 2.27 = 1563.20 kips Using Eq. 9-19 Flexural Yielding = (phi) * Fy * Snet1 / e = 0.90 * 50.00 * 78.94 / 2.27 = 1563.20 kips Using Eq. 9-4 Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 111.99 / 2.27 = 2402.47 kips Section Bending Strength Calculations Summary: Coped Beam Buckling and Flexure at Longest Cope (Top Cope Only at Section) Eccentricity in Y Direction at Elastic Neutral Axis, ey = -10.9 in. Equivalent Additional Shear Due to Axial Moment = Max(-10.9 * 10,-10.9 * -10) / 5.77 = 18.9 kips Eccentricity in Y Direction at Plastic Neutral Axis, ey = -13.7 in. Equivalent Additional Shear Due to Axial Moment = Max(-13.7 * 10,-13.7 * -10) / 5.77 = 23.7 kips Buckling Capacity With Axial Load : 615.40 - 18.92 = 596.48 >= 70.00 kips (OK) Flexural Yielding Capacity With Axial Load : 615.40 - 18.92 = 596.48 >= 70.00 kips (OK) Flexural Rupture Capacity With Axial Load : 1188.79 - 23.70 = 1165.09 >= 70.00 kips (OK) Coped Beam Buckling and Flexure at Furthest Bolt Line within Cope (Top Cope Only at Section) Eccentricity in Y Direction at Elastic Neutral Axis, ey = -12.1 in. Equivalent Additional Shear Due to Axial Moment = Max(-12.1 * 10,-12.1 * -10) / 2.27 = 53.4 kips Eccentricity in Y Direction at Plastic Neutral Axis, ey = -15.7 in. Equivalent Additional Shear Due to Axial Moment = Max(-15.7 * 10,-15.7 * -10) / 2.27 = 69 kips Buckling Capacity With Axial Load : 1563.20 - 53.42 = 1509.78 >= 70.00 kips (OK) Flexural Yielding Capacity With Axial Load : 1563.20 - 53.42 = 1509.78 >= 70.00 kips (OK) Flexural Rupture Capacity With Axial Load : 2402.47 - 69.00 = 2333.48 >= 70.00 kips (OK) Tensile Strength: Total Area of Web = d * tw = 26.900 * 0.490 = 13.181 in^2 Total Area of Flanges = 2 * (bf - tw) * tf = 2 * (10.000 - 0.490) * 0.745 = 14.170 in^2 Beam Coped At Top Gross Area of Beam Web = 13.18 - 1.5 * 0.49 = 12.45 in^2 Gross Area of Flanges = 14.17 - 7.08 = 7.08 in^2 Using Equation J4-1 on p.16.1-128: Tension Yielding = phi * Fybeam * Ag = 0.90 * 50.00 * 19.53 = 878.89 kips 878.89 kips >= Axial T = 10.00 kips (OK) For single bolt per gage line, Using Table D3.1 Case 1, p.16.1-28, U = 1.0 Area of Holes = ([hole width] + 0.062) * [# rows] * tw = (0.938 + 0.062) * 4.000 * 0.490 = 1.960 in^2 Net Beam Web Section Area, Anetweb = 12.45 - 1.96 = 10.49 in^2 Effective Tension Area, Aet = Min(0.85 * Agross, U * Anet) = Min(0.85 * 19.53, 1.00 * 10.49) = 10.49 in^2 Using Equation J4-2 on p.16.1-128: Tension Rupture = phi * Fubeam * Ae = 0.75 * 65.00 * 10.49 = 511.21 kips 511.21 kips >= Axial T = 10.00 kips (OK) Compression Strength: Moment Of Inertia = 1355.58 in^4 Gross Area at Beam Section, Agbm = 19.53 in^2 Radius of gyration = (I/Agbm)^0.5 = (1355.58 / 19.53)^0.5 = 8.33 in. KL/r = 1.20 * 3.50 / 8.33 = 0.50 KL/r <= 25 Compression Strength = Fybeam * Agbm * phi = 50.00 * 19.53 * 0.90 = 878.89 kips 878.89 kips >= Axial C = 10.00 kips (OK) Axial Stress Capacity Check at Longest Cope: T = 10.00 kips C = -10.00 kips Eccentricity in X Direction, ex = 5.77 in. Eccentricity in Y Direction, ey = -13.68 in. Effective Shear Area, Aev = 12.45 in^2 Effective Tension Area, Aet = 19.53 in^2 Effective Beam Plastic Section Modulus, Znet = 140.76 in^3 Shear Stress On Net Section = 70.00 / 12.45 = 5.62 ksi Axial Stress on Top of Section due to Moment from Reaction = -1 * 70.00 * 5.77 / 140.76 = -2.87 ksi Axial Stress on Bottom of Section due to Moment from Reaction = 70.00 * 5.77 / 140.76 = 2.87 ksi Axial Stress on Net Section due to Tension Axial force = 10.00 / 19.53 = 0.51 ksi Axial Stress on Top of Section due to Moment from Tension Axial Load = -1 * 10.00 * -13.68 / 140.76 = 0.97 ksi Axial Stress on Bottom of Section due to Moment from Tension Axial Load = 10.00 * -13.68 / 140.76 = -0.97 ksi Axial Stress on Net Section due to Compression Axial force = -10.00 / 19.53 = -0.51 ksi Axial Stress on Top of Section due to Moment from Compression Axial Load = -1 * -10.00 * -13.68 / 140.76 = -0.97 ksi Axial Stress on Bottom of Section due to Moment from Compression Axial Load = -10.00 * -13.68 / 140.76 = 0.97 ksi Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 65.00 = 29.25 ksi Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 65.00 = 48.75 ksi Total Axial Stress on Top of Section with Tension Axial Load = ABS(-2.87 + 0.51 + 0.97) = 1.39 ksi Stress Interaction at Top of Section (elliptical): (fvn / SRSC)^2 + (fan / TRSC )^2 = (5.62 / 29.25)^2 + (1.39 / 48.75 )^2 = 0.04 <= 1.0 (OK) Total Axial Stress on Bottom of Section with Tension Axial Load = ABS(2.87 + 0.51 + -0.97) = 2.41 ksi Stress Interaction at Bottom of Section (elliptical): (fvn / SRSC)^2 + (fan / TRSC )^2 = (5.62 / 29.25)^2 + (2.41 / 48.75 )^2 = 0.04 <= 1.0 (OK) Total Axial Stress on Top of Section with Compression Axial Load = ABS(-2.87 + -0.51 + -0.97) = 4.35 ksi Stress Interaction at Top of Section (elliptical): (fvn / SRSC)^2 + (fan / TRSC )^2 = (5.62 / 29.25)^2 + (4.35 / 48.75 )^2 = 0.04 <= 1.0 (OK) Total Axial Stress on Bottom of Section with Compression Axial Load = ABS(2.87 + -0.51 + 0.97) = 3.33 ksi Stress Interaction at Bottom of Section (elliptical): (fvn / SRSC)^2 + (fan / TRSC )^2 = (5.62 / 29.25)^2 + (3.33 / 48.75 )^2 = 0.04 <= 1.0 (OK) Axial Stress Capacity Check at Furthest Bolt Line From Support Within Cope: T = 10.00 kips C = -10.00 kips Eccentricity in X Direction, ex = 2.27 in. Eccentricity in Y Direction, ey = -15.68 in. Effective Shear Area, Aev = 10.49 in^2 For single bolt per gage line, Using Table D3.1 Case 1, p.16.1-28, U = 1.0 Area of Holes = ([hole width] + 0.062) * [# rows] * tw = (0.938 + 0.062) * 4.000 * 0.490 = 1.960 in^2 Net Beam Web Section Area, Anetweb = 12.45 - 1.96 = 10.49 in^2 Effective Tension Area, Aet = Min(0.85 * Agross, U * Anet) = Min(0.85 * 19.53, 1.00 * 10.49) = 10.49 in^2 Effective Beam Plastic Section Modulus, Znet = 111.99 in^3 Shear Stress On Net Section = 70.00 / 10.49 = 6.68 ksi Axial Stress on Top of Section due to Moment from Reaction = -1 * 70.00 * 2.27 / 111.99 = -1.42 ksi Axial Stress on Bottom of Section due to Moment from Reaction = 70.00 * 2.27 / 111.99 = 1.42 ksi Axial Stress on Net Section due to Tension Axial force = 10.00 / 10.49 = 0.95 ksi Axial Stress on Top of Section due to Moment from Tension Axial Load = -1 * 10.00 * -15.68 / 111.99 = 1.40 ksi Axial Stress on Bottom of Section due to Moment from Tension Axial Load = 10.00 * -15.68 / 111.99 = -1.40 ksi Axial Stress on Net Section due to Compression Axial force = -10.00 / 10.49 = -0.95 ksi Axial Stress on Top of Section due to Moment from Compression Axial Load = -1 * -10.00 * -15.68 / 111.99 = -1.40 ksi Axial Stress on Bottom of Section due to Moment from Compression Axial Load = -10.00 * -15.68 / 111.99 = 1.40 ksi Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 65.00 = 29.25 ksi Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 65.00 = 48.75 ksi Total Axial Stress on Top of Section with Tension Axial Load = ABS(-1.42 + 0.95 + 1.40) = 0.93 ksi Stress Interaction at Top of Section (elliptical): (fvn / SRSC)^2 + (fan / TRSC )^2 = (6.68 / 29.25)^2 + (0.93 / 48.75 )^2 = 0.05 <= 1.0 (OK) Total Axial Stress on Bottom of Section with Tension Axial Load = ABS(1.42 + 0.95 + -1.40) = 0.97 ksi Stress Interaction at Bottom of Section (elliptical): (fvn / SRSC)^2 + (fan / TRSC )^2 = (6.68 / 29.25)^2 + (0.97 / 48.75 )^2 = 0.05 <= 1.0 (OK) Total Axial Stress on Top of Section with Compression Axial Load = ABS(-1.42 + -0.95 + -1.40) = 3.77 ksi Stress Interaction at Top of Section (elliptical): (fvn / SRSC)^2 + (fan / TRSC )^2 = (6.68 / 29.25)^2 + (3.77 / 48.75 )^2 = 0.06 <= 1.0 (OK) Total Axial Stress on Bottom of Section with Compression Axial Load = ABS(1.42 + -0.95 + 1.40) = 1.87 ksi Stress Interaction at Bottom of Section (elliptical): (fvn / SRSC)^2 + (fan / TRSC )^2 = (6.68 / 29.25)^2 + (1.87 / 48.75 )^2 = 0.05 <= 1.0 (OK) |
Double Angles Bolted Bolted Calcs: |
Angle1 Support Angle Leg Gross Area = 0.31 * 11.50 = 3.60 in^2 Net Area = (11.50 - (4 *(0.94 + 1/16)) * 0.31 = 2.35 in^2 Using Eq.J4-3: Shear Yielding = (phi) * 0.6 * Fya * [Gross Area] = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips Using Eq.J4-4: Shear Rupture = (phi) * 0.6 * Fua * [Net Area] = 0.75 * 0.6 * 65.00 * 2.35 = 68.67 kips Block Shear Using Eq.J4-5: Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (11.5 - 1.25) = 10.25 in. Net Shear Length = 10.2 - (3.5 * (0.938 + 1/16)) = 6.75 in. Gross Tension Length = [edge dist.] = 1.75 in. Net Tension Length = (1.75 - (1.12 + 1/16)/2) = 1.15 in. 1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 65.00 * 6.75) + (1.00 * 65.00 * 1.15)) = 79.37 kips 2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.15)) = 89.75 kips Block Shear = 79.37 kips Check Angle Prying (eliminate prying action) Per AISC 9-20 at Shear and Axial : Gage ratio: gage1 ratio = gage2 / (gage1 + gage2) = 3.5 / (3.5 + 3.5) = 0.5 frt = axial reaction * gage1 ratio / no of rows / bolt_area = 10.00 * 0.50 / 4.00 / 0.60 = 2.08 ksi frv = vertical reaction * gage1 ratio / #bolts / bolt_area = 70.00 * 0.50 / 4 / 0.60 = 14.55 ksi Required tension stress (frt) = 2.079 ksi is not greater than 30% of total available Tension Stress (0.3 * Fnt = 27.000 ksi) Required shear stress (frv) = 14.551 ksi is not greater than 30% of total available Shear Stress (0.3 * Fnv = 16.200 ksi) F'nt = 90.000 ksi T = axial tension * gage1 ratio / no of rows = 10.00 * 0.5 / 4.00 = 1.25 kips per bolt V = reaction * gage1 ratio / num bolts angle = 70.00 * 0.5 / 4 = 8.75 kips per bolt a = (angle leg + tw/2) - gage = (5.00 + 0.49/2) - 3.50 = 1.75 in. b = (angle leg - tang/2) - a = (5.00 - 0.31/2) - 1.75 = 3.10 in. b' = b - db/2 = 3.10 - 0.88/2 = 2.66 in. Tributary Length due to b at 45 deg, 2b (edge bolt) = Min(2 * b, b + edge dist) = Min(2 * 3.10, 3.10 + 1.25) = 4.35 in. Tributary Length, s (edge bolt) = 0.5 * spacing + edge dist = 0.5 * 3.00 + 1.25 = 2.75 in. For p = Min(s, 2b) = Min(2.75, 4.35) = 2.75 in. tmin1 = sqrt(4 * T * b' / (phi * p * Fu)) = sqrt(4 * 1.25 * 2.66 / (0.90 * 2.75 * 65.00)) = 0.29 in. Tributary Length due to b at 45 deg, 2b (spacing bolt) = 2 * 3.10 = 6.20 in. Tributary Length, s (spacing bolt) = 3.00 in. For p = Min(s, 2b) = Min(3.00, 6.20) = 3.00 in. tmin2 = sqrt(4 * T * b' / (phi * p * Fu)) = sqrt(4 * 1.25 * 2.66 / (0.90 * 3.00 * 65.00)) = 0.28 in. Beam Angle Leg Gross Area = 0.31 * 11.50 = 3.60 in^2 Net Area = (11.50 - (4 *(0.94 + 1/16)) * 0.31 = 2.35 in^2 Using Eq.J4-3: Shear Yielding = (phi) * 0.6 * Fya * [Gross Area] = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips Using Eq.J4-4: Shear Rupture = (phi) * 0.6 * Fua * [Net Area] = 0.75 * 0.6 * 65.00 * 2.35 = 68.67 kips Block Shear Using Eq.J4-5: Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (11.5 - 1.25) = 10.25 in. Net Shear Length = 10.2 - (3.5 * (0.938 + 1/16) = 6.75 in. Gross Tension Length = [edge dist.] = 1.50 in. Net Tension Length = (1.5 - (0.938 + 1/16)/2) = 1.00 in. 1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 65.00 * 6.75) + (1.00 * 65.00 * 1.00)) = 77.06 kips 2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.00)) = 87.45 kips Block Shear = 77.06 kips Block 1 (Axial): Gross Shear Length = [edge dist.] = 1.50 in. Net Shear Length = (1.5 - (0.938 + 1/16)/2) = 1.00 in. Gross Tension Length = (11.5 - 1.25) = 10.25 in. Net Tension Length = 10.2 - (3.5 * (0.938 + 1/16) = 6.75 in. 1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 65.00 * 1.00) + (1.00 * 65.00 * 6.75)) = 112.15 kips 2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 50.00 * 1.50) + (1.00 * 65.00 * 6.75)) = 113.56 kips Block Shear = 112.15 kips Block 2 (Axial): Gross Shear Length = 2 * [edge dist.] = 3.00 in. Net Shear Length = 2 * (1.5 - (0.938 + 1/16)/2) = 2.00 in. Gross Tension Length = (4 - 1) * 3 = 9.00 in. Net Tension Length = 9 - (4 - 1) * (0.938 + 1/16)) = 6.00 in. 1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 65.00 * 2.00) + (1.00 * 65.00 * 6.00)) = 109.87 kips 2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 50.00 * 3.00) + (1.00 * 65.00 * 6.00)) = 112.68 kips Block Shear = 109.87 kips Block Shear Axial Total = min(Block Shear (1) Axial, Block Shear (2) Axial) = min(112.15, 109.87) = 109.87 kips At Axial Loading: Check Shear and Tension Interaction Block Shear: (35.00/77.06)^2 + (5.00/109.87)^2 = 0.21 <= 1 (OK) Tensile Strength: Angle depth * tw = 11.500 * 0.313 = 3.599 in^2 Using Equation J4-1 on p.16.1-128: Tension Yielding = phi * Fya * Ag = 0.90 * 50.00 * 3.60 = 161.98 kips U = 1 Effective Tension Area, Ae = U * [Net Tension Area] = 1 * (3.599 - 1.252) = 2.348 in^2 Using Equation J4-2 on p.16.1-128: Tension Rupture = phi * Fua * Ae = 0.75 * 65.00 * 2.35 = 114.44 kips Compression Strength: radius of gyration = t/(12^0.5) = 0.313 / 3.46 = 0.0904 in. KL/r = 1.20 * 2.00 / 0.09 = 26.56 KL/r > 25 Fe = E * pi^2 / (KL/r)^2 = 29000.00 * pi^2 / (26.56)^2 = 405.68 ksi When KL/r <= 4.71 * (E/(Qs * Fya))^0.5 Fcr = (0.658^(Fya / Fe)) * Fya = (0.66^(50.00 / 405.68)) * 50.00 = 47.49 ksi Compression Strength = min(Fcr,Fya) * Agangle * phi = 47.49 * 3.60 * 0.90 = 153.83 kips Angle2 Support Angle Leg Gross Area = 0.31 * 11.50 = 3.60 in^2 Net Area = (11.50 - (4 *(0.94 + 1/16)) * 0.31 = 2.35 in^2 Using Eq.J4-3: Shear Yielding = (phi) * 0.6 * Fya * [Gross Area] = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips Using Eq.J4-4: Shear Rupture = (phi) * 0.6 * Fua * [Net Area] = 0.75 * 0.6 * 65.00 * 2.35 = 68.67 kips Block Shear Using Eq.J4-5: Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (11.5 - 1.25) = 10.25 in. Net Shear Length = 10.2 - (3.5 * (0.938 + 1/16)) = 6.75 in. Gross Tension Length = [edge dist.] = 1.75 in. Net Tension Length = (1.75 - (1.12 + 1/16)/2) = 1.15 in. 1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 65.00 * 6.75) + (1.00 * 65.00 * 1.15)) = 79.37 kips 2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.15)) = 89.75 kips Block Shear = 79.37 kips Check Angle Prying (eliminate prying action) Per AISC 9-20 at Shear and Axial : Gage ratio: gage2 ratio = gage1 / (gage1 + gage2) = 3.5 / (3.5 + 3.5) = 0.5 frt = axial reaction * gage2 ratio / no of rows / bolt_area = 10.00 * 0.50 / 4.00 / 0.60 = 2.08 ksi frv = vertical reaction * gage2 ratio / #bolts / bolt_area = 70.00 * 0.50 / 4 / 0.60 = 14.55 ksi Required tension stress (frt) = 2.079 ksi is not greater than 30% of total available Tension Stress (0.3 * Fnt = 27.000 ksi) Required shear stress (frv) = 14.551 ksi is not greater than 30% of total available Shear Stress (0.3 * Fnv = 16.200 ksi) F'nt = 90.000 ksi T = axial tension * gage2 ratio / no of rows = 10.00 * 0.5 / 4.00 = 1.25 kips per bolt V = reaction * gage2 ratio / num bolts angle = 70.00 * 0.5 / 4 = 8.75 kips per bolt a = (angle leg + tw/2) - gage = (5.00 + 0.49/2) - 3.50 = 1.75 in. b = (angle leg - tang/2) - a = (5.00 - 0.31/2) - 1.75 = 3.10 in. b' = b - db/2 = 3.10 - 0.88/2 = 2.66 in. Tributary Length due to b at 45 deg, 2b (edge bolt) = Min(2 * b, b + edge dist) = Min(2 * 3.10, 3.10 + 1.25) = 4.35 in. Tributary Length, s (edge bolt) = 0.5 * spacing + edge dist = 0.5 * 3.00 + 1.25 = 2.75 in. For p = Min(s, 2b) = Min(2.75, 4.35) = 2.75 in. tmin1 = sqrt(4 * T * b' / (phi * p * Fu)) = sqrt(4 * 1.25 * 2.66 / (0.90 * 2.75 * 65.00)) = 0.29 in. Tributary Length due to b at 45 deg, 2b (spacing bolt) = 2 * 3.10 = 6.20 in. Tributary Length, s (spacing bolt) = 3.00 in. For p = Min(s, 2b) = Min(3.00, 6.20) = 3.00 in. tmin2 = sqrt(4 * T * b' / (phi * p * Fu)) = sqrt(4 * 1.25 * 2.66 / (0.90 * 3.00 * 65.00)) = 0.28 in. Beam Angle Leg Gross Area = 0.31 * 11.50 = 3.60 in^2 Net Area = (11.50 - (4 *(0.94 + 1/16)) * 0.31 = 2.35 in^2 Using Eq.J4-3: Shear Yielding = (phi) * 0.6 * Fya * [Gross Area] = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips Using Eq.J4-4: Shear Rupture = (phi) * 0.6 * Fua * [Net Area] = 0.75 * 0.6 * 65.00 * 2.35 = 68.67 kips Block Shear Using Eq.J4-5: Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (11.5 - 1.25) = 10.25 in. Net Shear Length = 10.2 - (3.5 * (0.938 + 1/16) = 6.75 in. Gross Tension Length = [edge dist.] = 1.50 in. Net Tension Length = (1.5 - (0.938 + 1/16)/2) = 1.00 in. 1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 65.00 * 6.75) + (1.00 * 65.00 * 1.00)) = 77.06 kips 2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.00)) = 87.45 kips Block Shear = 77.06 kips Block 1 (Axial): Gross Shear Length = [edge dist.] = 1.50 in. Net Shear Length = (1.5 - (0.938 + 1/16)/2) = 1.00 in. Gross Tension Length = (11.5 - 1.25) = 10.25 in. Net Tension Length = 10.2 - (3.5 * (0.938 + 1/16) = 6.75 in. 1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 65.00 * 1.00) + (1.00 * 65.00 * 6.75)) = 112.15 kips 2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 50.00 * 1.50) + (1.00 * 65.00 * 6.75)) = 113.56 kips Block Shear = 112.15 kips Block 2 (Axial): Gross Shear Length = 2 * [edge dist.] = 3.00 in. Net Shear Length = 2 * (1.5 - (0.938 + 1/16)/2) = 2.00 in. Gross Tension Length = (4 - 1) * 3 = 9.00 in. Net Tension Length = 9 - (4 - 1) * (0.938 + 1/16)) = 6.00 in. 1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 65.00 * 2.00) + (1.00 * 65.00 * 6.00)) = 109.87 kips 2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.75 * 0.31 * ((0.60 * 50.00 * 3.00) + (1.00 * 65.00 * 6.00)) = 112.68 kips Block Shear = 109.87 kips Block Shear Axial Total = min(Block Shear (1) Axial, Block Shear (2) Axial) = min(112.15, 109.87) = 109.87 kips At Axial Loading: Check Shear and Tension Interaction Block Shear: (35.00/77.06)^2 + (5.00/109.87)^2 = 0.21 <= 1 (OK) Tensile Strength: Angle depth * tw = 11.500 * 0.313 = 3.599 in^2 Using Equation J4-1 on p.16.1-128: Tension Yielding = phi * Fya * Ag = 0.90 * 50.00 * 3.60 = 161.98 kips U = 1 Effective Tension Area, Ae = U * [Net Tension Area] = 1 * (3.599 - 1.252) = 2.348 in^2 Using Equation J4-2 on p.16.1-128: Tension Rupture = phi * Fua * Ae = 0.75 * 65.00 * 2.35 = 114.44 kips Compression Strength: radius of gyration = t/(12^0.5) = 0.313 / 3.46 = 0.0904 in. KL/r = 1.20 * 2.00 / 0.09 = 26.56 KL/r > 25 Fe = E * pi^2 / (KL/r)^2 = 29000.00 * pi^2 / (26.56)^2 = 405.68 ksi When KL/r <= 4.71 * (E/(Qs * Fya))^0.5 Fcr = (0.658^(Fya / Fe)) * Fya = (0.66^(50.00 / 405.68)) * 50.00 = 47.49 ksi Compression Strength = min(Fcr,Fya) * Agangle * phi = 47.49 * 3.60 * 0.90 = 153.83 kips Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(215.97 , 215.97) = 215.97 kips 215.97 kips >= Reaction V = 70.00 kips (OK) Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(137.332 , 137.332) = 137.332 kips 137.33 kips >= Reaction V = 70.00 kips (OK) Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(158.733 , 158.733) = 158.733 kips 158.73 kips >= Reaction V = 70.00 kips (OK) Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(215.97 , 215.97) = 215.97 kips 215.97 kips >= Reaction V = 70.00 kips (OK) Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(137.332 , 137.332) = 137.332 kips 137.33 kips >= Reaction V = 70.00 kips (OK) Total Beam Side Vertical Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(154.117 , 154.117) = 154.117 kips 154.12 kips >= Reaction V = 70.00 kips (OK) Total Beam Side Axial Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(219.731 , 219.731) = 219.731 kips 219.73 kips >= Axial T/C = 10.00 kips (OK) Total Beam Side Tension Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(323.955 , 323.955) = 323.955 kips 323.96 kips >= Axial T/C = 10.00 kips (OK) Total Beam Side Tension Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(228.887 , 228.887) = 228.887 kips 228.89 kips >= Axial T/C = 10.00 kips (OK) Total Beam Side Compression Capacity = min (CompressionAngle1/Gage1 Ratio ,CompressionAngle2/Gage2 Ratio ) = min(307.667 , 307.667) = 307.667 kips 307.67 kips >= Axial C = 10.00 kips (OK) Yield Line Analysis at Support Web: Mp = Fy * tw^2/4 = 50.000 * 0.545^2 / 4 = 3.713 kips-in/in Open web depth at support, T = d - 2 * kdes = 26.980 in. Connection line along support web (perpendicular to T), g = 7.000 in. Offset at connection line from flange1, a = 1.840 in. Offset at connection line from flange2, b = 16.140 in. Verify Yield Line Capacity Applicability, (a >= twgird AND b >= twgird) = 1.84 >= 0.545 AND 16.1 >= 0.545 = OK Local Bending, Pu = phi * Mp * [4 * (2 * T * a * b * (a + b))^0.5 + g * (a + b)] / a / b phi * Pu = 0.900 * 3.713 * (4 * (2 * 26.980 * 1.840 * 16.140 * (1.840 + 16.140))^0.5 + 7.000 * (1.840 + 16.140)) / 1.840 / 16.140 = 90.558 kips 90.56 kips >= 10.00 kips (OK, Axial T/C) |
Weld Calcs: |
(Not applicable / No results ) |