
|
|
| Summary Reports: | Job Standard Summary | Job Sample Calcs Report | B+Op Connection Comparison Report | Standard Connection Cost Report Job Preferences Report | No Connections Summary | No Connections Detailed | No Connections Reference Map | |||||||||
| Shear and Axial Reports: | Shear Plate: | Specs | Strengths (Shear Only Connections) | Welds | Doublers | Connection Cost Report | ||||
| Strengths (Shear & Axial Connections) | ||||||||||
| Single Angle: | Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
| Double Angle Reports: | Support Side Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
| Beam Side Specs | ||||||||||
| End Plate Reports: | Specs | Strengths (Shear & Axial) | Welds | Connection Cost Report | ||||||
| Moment Reports: | Specs | Support Strengths | Beam Flange Welds | Connection Cost Report | ||||||
| Moment Plates: | Specs | Strengths | Welds | |||||||
| Column Stiffeners: | Specs | Strengths | Welds | |||||||
| Column Web Doublers: | Specs | Strengths | Welds | |||||||
| Shear Plate: | Specs | Strengths | Welds | |||||||
| Double Angle: | Support Side Specs | Strengths | Welds | |||||||
| Beam Side Specs | ||||||||||
| Connection Number: |
bb.2bb.sa.00001.00001 |
| Main Calcs: |
DOUBLE ANGLES Bolted to Beam, Bolted to Support CONNECTION SUMMARY
Girder profile: W30X108
Filler Beam profile: W27X94
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: 0.00
Horizontal Offset: 0.00
Span: 39.42 ft.
Reaction, V: 70.00 kips
Axial Load T/C: 10/-10 kips
Shear Capacity, Rn: 127.80 kips
Axial Capacity T/C: 23.15 / -23.15 kips
Design/Reference according to AISC 14th Ed. - LRFD
Beam material grade: A992
Support material grade: A992
Angle material grade: A529-GR.50
Angle1 Profile: L5X3-1/2X5/16
Length = 11.500 in.
Beam side bolts: 4 rows x 1 column 0.875 in. Diameter A325N_TC bolts
Beam side bolt vertical spacing: 3 in.
Support side bolts: 4 rows x 1 column 0.875 in. Diameter A325N_TC bolts
Support side bolt vertical spacing: 3 in.
Angle2 Profile: L5X3-1/2X5/16
Length = 11.500 in.
Beam side bolts: 4 rows x 1 column 0.875 in. Diameter A325N_TC bolts
Beam side bolt vertical spacing: 3 in.
Support side bolts: 4 rows x 1 column 0.875 in. Diameter A325N_TC bolts
Support side bolt vertical spacing: 3 in.
Configuration Geometry:
Beam setback = 0.5 in.
Edge distance at vertical edge of beam: 1.5 in.
Edge distance at top edge of beam: 1.75 in.
Top cope depth: 1.5 in.
Top cope length: 5 in.
Horizontal distance to first hole: 2 in.
Bolted Angle Leg At Beam :
Angle 1 Leg Distances :
Down distance from top of filler beam flange : 3.25 in.
Edge distance at vertical edge : 1.50 in.
Edge distance at top edge : 1.25 in.
Edge distance at bottom edge : 1.25 in.
Angle 2 Leg Distances :
Down distance from top of filler beam flange : 3.25 in.
Edge distance at vertical edge : 1.50 in.
Edge distance at top edge : 1.25 in.
Edge distance at bottom edge : 1.25 in.
Bolted Angle Leg At Support :
Angle 1 Leg Distances :
Down distance from top of filler beam flange : 3.25 in.
Gage at Bolt : 3.5 in.
Edge distance at vertical edge : 1.75 in.
Edge distance at top edge : 1.25 in.
Edge distance at bottom edge : 1.25 in.
Angle 2 Leg Distances :
Down distance from top of filler beam flange : 3.25 in.
Gage at Bolt : 3.5 in.
Edge distance at vertical edge : 1.75 in.
Edge distance at top edge : 1.25 in.
Edge distance at bottom edge : 1.25 in.
Holes in Beam Web : STD diameter = 0.9375 in.
Holes in Beam Angle Leg : STD diameter = 0.9375 in.
Holes in Support Girder : STD diameter = 0.9375 in.
Holes in Support Angle Leg : SSL slot width = 0.9375 in., slot length = 1.125 in. |
| Bolt Strength Calcs: |
BOLT SHEAR CAPACITY AT BEAM AND ANGLE 1 SIDE:
At Angle 1 side:
Bolt Shear Capacity at Shear Load Only:
C = no of bolts = 4.000
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips
Bolt Shear Capacity at Combined Shear and Axial Load:
C = no of bolts = 4.000
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips
Shear Capacity = (phi)Rn * cos(Angle) = 97.42 * 0.99 = 96.44 kips
Axial Capacity = (phi)Rn * sin(Angle) = 97.42 * 0.14 = 13.78 kips
BOLT SHEAR CAPACITY AT BEAM AND ANGLE 2 SIDE:
At Angle 2 side:
Bolt Shear Capacity at Shear Load Only:
C = no of bolts = 4.000
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips
Bolt Shear Capacity at Combined Shear and Axial Load:
C = no of bolts = 4.000
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips
Shear Capacity = (phi)Rn * cos(Angle) = 97.42 * 0.99 = 96.44 kips
Axial Capacity = (phi)Rn * sin(Angle) = 97.42 * 0.14 = 13.78 kips
Total Vertical Bolt Shear Capacity =
= min(Shear Load Only at Angle 1 side/gage1 ratio, Shear and Axial Load at Angle 1 side/gage1 ratio,
Shear Load Only at Angle 2 side/gage2 ratio, Shear and Axial Load at Angle 2 side/gage2 ratio) =
= min(97.42/0.5, 96.44/0.5, 97.42/0.5, 96.44/0.5) = 192.87 kips
192.87 kips >= 70.00 kips (OK)
Bolt Shear Axial Capacity at Shear and Axial Load =
= min(Shear and Axial Load at Angle 1 side/gage1 ratio,Shear and Axial Load at Angle 2 side/gage2 ratio)
= min(13.78/0.5,13.78/0.5) = 27.55 kips
27.55 kips >= 10.00 kips (OK)
BOLT SHEAR CAPACITY AT SUPPORT AND ANGLE 1 SIDE:
Bolt Shear Capacity at Shear and Tension Load:
Gage ratio: gage1 ratio = gage2 / (gage1 + gage2) = 3.5 / (3.5 + 3.5) = 0.5
Required tension stress (frt) = gage1 ratio * axial reaction / bolt row count / bolt area = 0.500 * 10.000 / 4 / 0.601 = 2.079 ksi
Required shear stress (frv) = gage1 ratio * vertical reaction / bolt row count / bolt area = 0.50 * 70.00 / 4 / 0.60 = 14.55 ksi
Required tension stress (frt) = 2.079 ksi is not greater than 30% of total available Tension Stress (0.3 * Fnt = 27.000 ksi)
Required shear stress (frv) = 14.551 ksi is not greater than 30% of total available Shear Stress (0.3 * Fnv = 16.200 ksi)
F'nv = 54.000 ksi
C = no of bolts = 4.000
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips
BOLT SHEAR CAPACITY AT SUPPORT AND ANGLE 2 SIDE:
Bolt Shear Capacity at Shear and Tension Load:
Gage ratio: gage2 ratio = gage1 / (gage1 + gage2) = 3.5 / (3.5 + 3.5) = 0.5
Required tension stress (frt) = gage2 ratio * axial reaction / bolt row count / bolt area = 0.500 * 10.000 / 4 / 0.601 = 2.079 ksi
Required shear stress (frv) = gage2 ratio * vertical reaction / bolt row count / bolt area = 0.50 * 70.00 / 4 / 0.60 = 14.55 ksi
Required tension stress (frt) = 2.079 ksi is not greater than 30% of total available Tension Stress (0.3 * Fnt = 27.000 ksi)
Required shear stress (frv) = 14.551 ksi is not greater than 30% of total available Shear Stress (0.3 * Fnv = 16.200 ksi)
F'nv = 54.000 ksi
C = no of bolts = 4.000
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 24.35 * 4.00 = 97.42 kips
Vertical Bolt Shear Capacity at Support and Angle 1 =
= Shear and Tension Load Angle 1 side/gage1 ratio = 97.42/0.5 = 194.83 kips
Vertical Bolt Shear Capacity at Support and Angle 2 =
= Shear and Tension Load Angle 2 side/gage2 ratio = 97.42/0.5 = 194.83 kips
Total Support Side Bolt Shear Capacity = min(194.83, 194.83) = 194.83 kips
194.83 kips >= 70.00 kips (OK) |
| Bolt Bearing Calcs: |
BOLT BEARING AT BEAM AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 1.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.28 * (0.49/2) * 65.00 = 18.36 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 18.36, 25.08) = 18.36 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 9.78 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.78 * 0.31 * 65.00 = 179.10 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 179.10, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 18.364, 32.044) = 18.36 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 4.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.28 * (0.49/2) * 65.00 = 61.36 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 61.36, 25.08) = 25.08 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 6.78 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.78 * 0.31 * 65.00 = 124.17 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 124.17, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 7.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.28 * (0.49/2) * 65.00 = 104.36 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 104.36, 25.08) = 25.08 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 3.78 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.78 * 0.31 * 65.00 = 69.24 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 69.24, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 10.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 10.28 * (0.49/2) * 65.00 = 147.36 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 147.36, 25.08) = 25.08 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 0.78 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.78 * 0.31 * 65.00 = 14.31 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 14.31, 32.04) = 14.31 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 14.305) = 14.31 kips/bolt
Bearing Capacity at Beam and Angle for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 18.36 + 24.35 + 24.35 + 14.31 = 81.38 kips
BOLT BEARING AT BEAM AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 1.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.28 * (0.49/2) * 65.00 = 18.36 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 18.36, 25.08) = 18.36 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 9.78 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.78 * 0.31 * 65.00 = 179.10 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 179.10, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 18.364, 32.044) = 18.36 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 4.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.28 * (0.49/2) * 65.00 = 61.36 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 61.36, 25.08) = 25.08 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 6.78 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.78 * 0.31 * 65.00 = 124.17 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 124.17, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 7.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.28 * (0.49/2) * 65.00 = 104.36 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 104.36, 25.08) = 25.08 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 3.78 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.78 * 0.31 * 65.00 = 69.24 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 69.24, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 10.28 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 10.28 * (0.49/2) * 65.00 = 147.36 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 147.36, 25.08) = 25.08 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 0.78 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.78 * 0.31 * 65.00 = 14.31 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 14.31, 32.04) = 14.31 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 14.305) = 14.31 kips/bolt
Bearing Capacity at Beam and Angle for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 18.36 + 24.35 + 24.35 + 14.31 = 81.38 kips
BOLT BEARING AT BEAM AND ANGLE 1 SIDE
Vertical Shear and Tension Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 1.30 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.30 * (0.49/2) * 65.00 = 18.62 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 18.62, 25.08) = 18.62 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 9.89 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.89 * 0.31 * 65.00 = 181.01 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 181.01, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 18.619, 32.044) = 18.62 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 4.33 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.33 * (0.49/2) * 65.00 = 62.05 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 62.05, 25.08) = 25.08 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 6.85 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.85 * 0.31 * 65.00 = 125.52 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 125.52, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 7.36 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.36 * (0.49/2) * 65.00 = 105.49 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 105.49, 25.08) = 25.08 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 3.82 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.82 * 0.31 * 65.00 = 70.03 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 70.03, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 10.14 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 10.14 * (0.49/2) * 65.00 = 145.30 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 145.30, 25.08) = 25.08 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 0.79 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.79 * 0.31 * 65.00 = 14.54 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 14.54, 32.04) = 14.54 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(24.35, 25.083, 14.538) = 14.54 kips/bolt
Bearing Capacity at Beam and Angle for vertical and axial tension
= Sum{ Bearing At [(Row)i,(Column)i] }
= 18.62 + 24.35 + 24.35 + 14.54 = 81.86 kips
BOLT BEARING AT BEAM AND ANGLE 2 SIDE
Vertical Shear and Tension Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 1.30 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.30 * (0.49/2) * 65.00 = 18.62 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 18.62, 25.08) = 18.62 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 9.89 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.89 * 0.31 * 65.00 = 181.01 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 181.01, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 18.619, 32.044) = 18.62 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 4.33 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 4.33 * (0.49/2) * 65.00 = 62.05 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 62.05, 25.08) = 25.08 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 6.85 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.85 * 0.31 * 65.00 = 125.52 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 125.52, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 7.36 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 7.36 * (0.49/2) * 65.00 = 105.49 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 105.49, 25.08) = 25.08 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 3.82 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.82 * 0.31 * 65.00 = 70.03 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 70.03, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 32.044) = 24.35 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 10.14 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.06 * (0.49/2) * 65.00 = 29.56 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 10.14 * (0.49/2) * 65.00 = 145.30 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.88 * (0.49/2) * 65.00 = 25.08 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(29.56, 145.30, 25.08) = 25.08 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 0.79 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.79 * 0.31 * 65.00 = 14.54 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 14.54, 32.04) = 14.54 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(24.35, 25.083, 14.538) = 14.54 kips/bolt
Bearing Capacity at Beam and Angle for vertical and axial tension
= Sum{ Bearing At [(Row)i,(Column)i] }
= 18.62 + 24.35 + 24.35 + 14.54 = 81.86 kips
BEARING AT BEAM AND ANGLE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv1
= Min(Sum{ Bearing at side 1 [(Row)i,(Column)i] } / gage1 ratio,
Sum{ Bearing at side 2 [(Row)i,(Column)i] } / gage2 ratio )
= Min( 81.38/ 0.50, 81.38/ 0.50 ) = 162.76 kips
Bearing Capacity at Vertical and Axial Tension Load, Rbvt
= Min(Sum{ Bearing at side 1 [(Row)i,(Column)i] } / gage1 ratio,
Sum{ Bearing at side 2 [(Row)i,(Column)i] } / gage2 ratio )
= Min( 81.86/ 0.50, 81.86/ 0.50 ) = 163.73 kips
Vertical Bearing Capacity at shear and axial load, Rbv2 = Rbvt * cos(Angle) = 163.73 * cos(8.13) = 162.08 kips
Axial Bearing Capacity at shear and axial load, Rba = Rbvt * sin(Angle) = 163.73 * sin(8.13) = 23.15 kips
Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(162.76, 162.08) = 162.08 kips
Rbv = 162.08 kips >= Reaction V = 70.00 kips (OK)
Rba = 23.15 kips >= Axial T/C = 10.00 kips (OK)
BOLT BEARING AT SUPPORT AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcssupp at Support spacing = 2.06 in.
Lcesupp at Support edge = 26.08 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 26.08 * (0.55/1) * 65.00 = 831.56 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 831.56, 55.80) = 55.80 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 0.78 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.78 * 0.31 * 65.00 = 14.31 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 14.31, 32.04) = 14.31 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(24.35, 55.796, 14.305) = 14.31 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcssupp at Support spacing = 2.06 in.
Lcesupp at Support edge = 23.08 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 23.08 * (0.55/1) * 65.00 = 735.91 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 735.91, 55.80) = 55.80 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 3.78 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.78 * 0.31 * 65.00 = 69.24 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 69.24, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcssupp at Support spacing = 2.06 in.
Lcesupp at Support edge = 20.08 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 20.08 * (0.55/1) * 65.00 = 640.26 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 640.26, 55.80) = 55.80 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 6.78 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.78 * 0.31 * 65.00 = 124.17 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 124.17, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcssupp at Support spacing = 2.06 in.
Lcesupp at Support edge = 17.08 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 17.08 * (0.55/1) * 65.00 = 544.61 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 544.61, 55.80) = 55.80 kips/bolt
Lcsang1 at Angle 1 spacing = 2.06 in.
Lceang1 at Angle 1 edge = 9.78 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.78 * 0.31 * 65.00 = 179.10 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(37.77, 179.10, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt
Bearing Capacity at Support and Angle 1 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 14.31 + 24.35 + 24.35 + 24.35 = 87.37 kips
BOLT BEARING AT SUPPORT AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcssupp at Support spacing = 2.06 in.
Lcesupp at Support edge = 26.08 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 26.08 * (0.55/1) * 65.00 = 831.56 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 831.56, 55.80) = 55.80 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 0.78 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.78 * 0.31 * 65.00 = 14.31 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 14.31, 32.04) = 14.31 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(24.35, 55.796, 14.305) = 14.31 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcssupp at Support spacing = 2.06 in.
Lcesupp at Support edge = 23.08 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 23.08 * (0.55/1) * 65.00 = 735.91 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 735.91, 55.80) = 55.80 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 3.78 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.78 * 0.31 * 65.00 = 69.24 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 69.24, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcssupp at Support spacing = 2.06 in.
Lcesupp at Support edge = 20.08 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 20.08 * (0.55/1) * 65.00 = 640.26 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 640.26, 55.80) = 55.80 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 6.78 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.78 * 0.31 * 65.00 = 124.17 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 124.17, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 24.35 kips
Lcssupp at Support spacing = 2.06 in.
Lcesupp at Support edge = 17.08 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.06 * (0.55/1) * 65.00 = 65.76 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 17.08 * (0.55/1) * 65.00 = 544.61 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.88 * (0.55/1) * 65.00 = 55.80 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(65.76, 544.61, 55.80) = 55.80 kips/bolt
Lcsang2 at Angle 2 spacing = 2.06 in.
Lceang2 at Angle 2 edge = 9.78 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.06 * 0.31 * 65.00 = 37.77 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.78 * 0.31 * 65.00 = 179.10 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.88 * 0.31 * 65.00 = 32.04 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(37.77, 179.10, 32.04) = 32.04 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(24.35, 55.796, 32.044) = 24.35 kips/bolt
Bearing Capacity at Support and Angle 2 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 14.31 + 24.35 + 24.35 + 24.35 = 87.37 kips
BEARING AT SUPPORT AND ANGLES SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv1 = Sum{ [(Row)i,(Column)i] } / gage1 ratio = 87.37 / 0.50 = 174.74 kips
Bearing Capacity at Vertical Shear Load Only, Rbv2 = Sum{ [(Row)i,(Column)i] } / gage2 ratio = 87.37 / 0.50 = 174.74 kips
Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(174.74, 174.74) = 174.74 kips
174.74 kips >= 70.00 kips (OK) |
| Beam Strength Calcs: |
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 26.9 - 1.5 - 0 = 25.4 in.
Gross Area (Shear) = [Web Depth] * tw = 25.40 * 0.49 = 12.45 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw
= (25.40 - (4 * 1.00)) * 0.49 = 10.49 in^2
Using Eq.J4-3:
Shear Yielding = (phi) * 0.6 * Fybeam * [Gross Area] = 1.00 * 0.6 * 50.00 * 12.45 = 373.38 kips
Using Eq.J4-4:
Shear Rupture = (phi) * 0.6 * Fubeam * [Net Area] = 0.75 * 0.6 * 65.00 * 10.49 = 306.72 kips
Block Shear
Using Eq.J4-5:
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block Shear (1)
Gross Shear Length = [edge dist. at beam edge] + ([# rows - 1] * [spacing]) = 1.75 + 9 = 10.75 in.
Net Shear Length = Gross Shear Length - (# rows - 0.5) * (hole size + 0.0625) = 10.8 - (4 - 0.5) * 1 = 7.25 in.
Gross Tension Length = [edge dist. at beam edge] + ([# cols - 1] * [spacing]) = 1.5 + (1 - 1) * 3 = 1.50 in.
Net Tension Length = Gross Tension Length - (# cols - 0.5) * (hole size + 0.0625) = 1.5 - (1 - 0.5) * 1 = 1.00 in.
1. (phi) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length]))
= 0.75 * 0.49 * ((0.60 * 65.00 * 7.25) + (1.00 * 65.00 * 1.00)) = 127.80 kips
2. (phi) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length]))
= 0.75 * 0.49 * ((0.60 * 50.00 * 10.75) + (1.00 * 65.00 * 1.00)) = 142.41 kips
Block Shear = 127.80 kips
Block Shear (1) Total = Block Shear (1) = 127.80 kips
127.80 kips >= Reaction V = 70.00 kips (OK)
Block Shear (1) Axial
Gross Shear Length = [edge dist. at beam edge] + ([# cols - 1] * [spacing]) = 1.5 + (1 - 1) * 3 = 1.50 in.
Net Shear Length = Gross Tension Length - (# cols - 0.5) * (hole size + 0.0625) = 1.5 - (1 - 0.5) * 1 = 1.00 in.
Gross Tension Length = [edge dist. at beam edge] + ([# rows - 1] * [spacing]) = 1.75 + 9 = 10.75 in.
Net Tension Length = Gross Shear Length - (# rows - 0.5) * (hole size + 0.0625) = 10.8 - (4 - 0.5) * 1 = 7.25 in.
1. (phi) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length]))
= 0.75 * 0.49 * ((0.60 * 65.00 * 1.00) + (1.00 * 65.00 * 7.25)) = 187.52 kips
2. (phi) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length]))
= 0.75 * 0.49 * ((0.60 * 50.00 * 1.50) + (1.00 * 65.00 * 7.25)) = 189.73 kips
Block Shear = 187.52 kips
Block Shear (1) Axial Shear Total = Block Shear (1) Axial = 187.52 kips
Block Shear (2) Axial
Gross Shear Length = 2 * (1.5 + 0) = 3.00 in.
Net Shear Length = 2 * (1.5 + 0 - (0.5 * 1)) = 2.00 in.
Gross Tension Length = 3 * 3 = 9.00 in.
Net Tension Length = 9 - (3 * (1)) = 6.00 in.
1. (phi) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length]))
= 0.75 * 0.49 * ((0.60 * 65.00 * 2.00) + (1.00 * 65.00 * 6.00)) = 171.99 kips
2. (phi) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length]))
= 0.75 * 0.49 * ((0.60 * 50.00 * 3.00) + (1.00 * 65.00 * 6.00)) = 176.40 kips
Block Shear = 171.99 kips
Block Shear Axial Total = Min(Block Shear (1) Axial total, Block Shear (2) Axial total) = Min(187.52 , 171.99) = 171.99 kips
171.99 kips >= Axial T = 10.00 kips (OK)
At Axial Loading:
Check Shear and Tension Interaction Block Shear:
(70.00/127.80)^2 + (10.00/171.99)^2 = 0.30 <= 1 (OK)
Buckling and Flexure at Longest Cope (Top Cope Only at Section)
Eccentricity at Section, e = 5.77 in.
If coped at top/bottom flange only and c <= 2d and dc <= d/2, use Eq. 9-7, Fcr = 26210.00 * f * k * (tw/h1)^2 <= Fy
Using Eq. 9-7 through 9-11
tw = 0.49 in.
h1 = 17.17 in.
c = 5.00 in.
When c/h1<=1.0, k=2.2(h1/c)^1.65
k = 2.20 * (17.17 / 5.00)^1.65 = 16.85
When c/d<=1.0, f=2c/d
f = 2 * (5.00 / 26.90) = 0.37
Fy = 50.00 ksi
Fcr = (phi) * 26210.00 * f * k * (tw/h1)^2 = 0.90 * 26210.00 * 0.37 * 16.85 * (0.49 / 17.17)^2 = 120.31 ksi
Fcrmin =phi * min(Fcr, Fy) = 45.00 ksi
Snet1 (bolt holes not applicable) = 78.94 in^3
Snet2 (bolt holes applicable) = 78.94 in^3
Znet = 140.76 in^3
Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 45.00 * 78.94 / 5.77 = 615.40 kips
Using Eq. 9-19
Flexural Yielding = (phi) * Fy * Snet1 / e = 0.90 * 50.00 * 78.94 / 5.77 = 615.40 kips
Using Eq. 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 140.76 / 5.77 = 1188.79 kips
Buckling and Flexure at Furthest Bolt Line within Cope (Top Cope Only at Section)
Eccentricity at Section, e = 2.27 in.
If coped at top/bottom flange only and c <= 2d and dc <= d/2, use Eq. 9-7, Fcr = 26210.00 * f * k * (tw/h1)^2 <= Fy
Using Eq. 9-7 through 9-11
tw = 0.49 in.
h1 = 18.39 in.
c = 5.00 in.
When c/h1<=1.0, k=2.2(h1/c)^1.65
k = 2.20 * (18.39 / 5.00)^1.65 = 18.87
When c/d<=1.0, f=2c/d
f = 2 * (5.00 / 26.90) = 0.37
Fy = 50.00 ksi
Fcr = (phi) * 26210.00 * f * k * (tw/h1)^2 = 0.90 * 26210.00 * 0.37 * 18.87 * (0.49 / 18.39)^2 = 117.45 ksi
Fcrmin =phi * min(Fcr, Fy) = 45.00 ksi
Snet1 (bolt holes not applicable) = 78.94 in^3
Snet2 (bolt holes applicable) = 58.37 in^3
Znet = 111.99 in^3
Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 45.00 * 78.94 / 2.27 = 1563.20 kips
Using Eq. 9-19
Flexural Yielding = (phi) * Fy * Snet1 / e = 0.90 * 50.00 * 78.94 / 2.27 = 1563.20 kips
Using Eq. 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 111.99 / 2.27 = 2402.47 kips
Section Bending Strength Calculations Summary:
Coped Beam Buckling and Flexure at Longest Cope (Top Cope Only at Section)
Eccentricity in Y Direction at Elastic Neutral Axis, ey = -10.9 in.
Equivalent Additional Shear Due to Axial Moment =
Max(-10.9 * 10,-10.9 * -10) / 5.77 = 18.9 kips
Eccentricity in Y Direction at Plastic Neutral Axis, ey = -13.7 in.
Equivalent Additional Shear Due to Axial Moment =
Max(-13.7 * 10,-13.7 * -10) / 5.77 = 23.7 kips
Buckling Capacity With Axial Load : 615.40 - 18.92 = 596.48 >= 70.00 kips (OK)
Flexural Yielding Capacity With Axial Load : 615.40 - 18.92 = 596.48 >= 70.00 kips (OK)
Flexural Rupture Capacity With Axial Load : 1188.79 - 23.70 = 1165.09 >= 70.00 kips (OK)
Coped Beam Buckling and Flexure at Furthest Bolt Line within Cope (Top Cope Only at Section)
Eccentricity in Y Direction at Elastic Neutral Axis, ey = -12.1 in.
Equivalent Additional Shear Due to Axial Moment =
Max(-12.1 * 10,-12.1 * -10) / 2.27 = 53.4 kips
Eccentricity in Y Direction at Plastic Neutral Axis, ey = -15.7 in.
Equivalent Additional Shear Due to Axial Moment =
Max(-15.7 * 10,-15.7 * -10) / 2.27 = 69 kips
Buckling Capacity With Axial Load : 1563.20 - 53.42 = 1509.78 >= 70.00 kips (OK)
Flexural Yielding Capacity With Axial Load : 1563.20 - 53.42 = 1509.78 >= 70.00 kips (OK)
Flexural Rupture Capacity With Axial Load : 2402.47 - 69.00 = 2333.48 >= 70.00 kips (OK)
Tensile Strength:
Total Area of Web = d * tw = 26.900 * 0.490 = 13.181 in^2
Total Area of Flanges = 2 * (bf - tw) * tf = 2 * (10.000 - 0.490) * 0.745 = 14.170 in^2
Beam Coped At Top
Gross Area of Beam Web = 13.18 - 1.5 * 0.49 = 12.45 in^2
Gross Area of Flanges = 14.17 - 7.08 = 7.08 in^2
Using Equation J4-1 on p.16.1-128:
Tension Yielding = phi * Fybeam * Ag = 0.90 * 50.00 * 19.53 = 878.89 kips
878.89 kips >= Axial T = 10.00 kips (OK)
For single bolt per gage line,
Using Table D3.1 Case 1, p.16.1-28,
U = 1.0
Area of Holes = ([hole width] + 0.062) * [# rows] * tw = (0.938 + 0.062) * 4.000 * 0.490 = 1.960 in^2
Net Beam Web Section Area, Anetweb = 12.45 - 1.96 = 10.49 in^2
Effective Tension Area, Aet = Min(0.85 * Agross, U * Anet) = Min(0.85 * 19.53, 1.00 * 10.49) = 10.49 in^2
Using Equation J4-2 on p.16.1-128:
Tension Rupture = phi * Fubeam * Ae = 0.75 * 65.00 * 10.49 = 511.21 kips
511.21 kips >= Axial T = 10.00 kips (OK)
Compression Strength:
Moment Of Inertia = 1355.58 in^4
Gross Area at Beam Section, Agbm = 19.53 in^2
Radius of gyration = (I/Agbm)^0.5 = (1355.58 / 19.53)^0.5 = 8.33 in.
KL/r = 1.20 * 3.50 / 8.33 = 0.50
KL/r <= 25
Compression Strength = Fybeam * Agbm * phi = 50.00 * 19.53 * 0.90 = 878.89 kips
878.89 kips >= Axial C = 10.00 kips (OK)
Axial Stress Capacity Check at Longest Cope:
T = 10.00 kips
C = -10.00 kips
Eccentricity in X Direction, ex = 5.77 in.
Eccentricity in Y Direction, ey = -13.68 in.
Effective Shear Area, Aev = 12.45 in^2
Effective Tension Area, Aet = 19.53 in^2
Effective Beam Plastic Section Modulus, Znet = 140.76 in^3
Shear Stress On Net Section = 70.00 / 12.45 = 5.62 ksi
Axial Stress on Top of Section due to Moment from Reaction = -1 * 70.00 * 5.77 / 140.76 = -2.87 ksi
Axial Stress on Bottom of Section due to Moment from Reaction = 70.00 * 5.77 / 140.76 = 2.87 ksi
Axial Stress on Net Section due to Tension Axial force = 10.00 / 19.53 = 0.51 ksi
Axial Stress on Top of Section due to Moment from Tension Axial Load = -1 * 10.00 * -13.68 / 140.76 = 0.97 ksi
Axial Stress on Bottom of Section due to Moment from Tension Axial Load = 10.00 * -13.68 / 140.76 = -0.97 ksi
Axial Stress on Net Section due to Compression Axial force = -10.00 / 19.53 = -0.51 ksi
Axial Stress on Top of Section due to Moment from Compression Axial Load = -1 * -10.00 * -13.68 / 140.76 = -0.97 ksi
Axial Stress on Bottom of Section due to Moment from Compression Axial Load = -10.00 * -13.68 / 140.76 = 0.97 ksi
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 65.00 = 29.25 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 65.00 = 48.75 ksi
Total Axial Stress on Top of Section with Tension Axial Load = ABS(-2.87 + 0.51 + 0.97) = 1.39 ksi
Stress Interaction at Top of Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (5.62 / 29.25)^2 + (1.39 / 48.75 )^2 = 0.04 <= 1.0 (OK)
Total Axial Stress on Bottom of Section with Tension Axial Load = ABS(2.87 + 0.51 + -0.97) = 2.41 ksi
Stress Interaction at Bottom of Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (5.62 / 29.25)^2 + (2.41 / 48.75 )^2 = 0.04 <= 1.0 (OK)
Total Axial Stress on Top of Section with Compression Axial Load = ABS(-2.87 + -0.51 + -0.97) = 4.35 ksi
Stress Interaction at Top of Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (5.62 / 29.25)^2 + (4.35 / 48.75 )^2 = 0.04 <= 1.0 (OK)
Total Axial Stress on Bottom of Section with Compression Axial Load = ABS(2.87 + -0.51 + 0.97) = 3.33 ksi
Stress Interaction at Bottom of Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (5.62 / 29.25)^2 + (3.33 / 48.75 )^2 = 0.04 <= 1.0 (OK)
Axial Stress Capacity Check at Furthest Bolt Line From Support Within Cope:
T = 10.00 kips
C = -10.00 kips
Eccentricity in X Direction, ex = 2.27 in.
Eccentricity in Y Direction, ey = -15.68 in.
Effective Shear Area, Aev = 10.49 in^2
For single bolt per gage line,
Using Table D3.1 Case 1, p.16.1-28,
U = 1.0
Area of Holes = ([hole width] + 0.062) * [# rows] * tw = (0.938 + 0.062) * 4.000 * 0.490 = 1.960 in^2
Net Beam Web Section Area, Anetweb = 12.45 - 1.96 = 10.49 in^2
Effective Tension Area, Aet = Min(0.85 * Agross, U * Anet) = Min(0.85 * 19.53, 1.00 * 10.49) = 10.49 in^2
Effective Beam Plastic Section Modulus, Znet = 111.99 in^3
Shear Stress On Net Section = 70.00 / 10.49 = 6.68 ksi
Axial Stress on Top of Section due to Moment from Reaction = -1 * 70.00 * 2.27 / 111.99 = -1.42 ksi
Axial Stress on Bottom of Section due to Moment from Reaction = 70.00 * 2.27 / 111.99 = 1.42 ksi
Axial Stress on Net Section due to Tension Axial force = 10.00 / 10.49 = 0.95 ksi
Axial Stress on Top of Section due to Moment from Tension Axial Load = -1 * 10.00 * -15.68 / 111.99 = 1.40 ksi
Axial Stress on Bottom of Section due to Moment from Tension Axial Load = 10.00 * -15.68 / 111.99 = -1.40 ksi
Axial Stress on Net Section due to Compression Axial force = -10.00 / 10.49 = -0.95 ksi
Axial Stress on Top of Section due to Moment from Compression Axial Load = -1 * -10.00 * -15.68 / 111.99 = -1.40 ksi
Axial Stress on Bottom of Section due to Moment from Compression Axial Load = -10.00 * -15.68 / 111.99 = 1.40 ksi
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 65.00 = 29.25 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 65.00 = 48.75 ksi
Total Axial Stress on Top of Section with Tension Axial Load = ABS(-1.42 + 0.95 + 1.40) = 0.93 ksi
Stress Interaction at Top of Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (6.68 / 29.25)^2 + (0.93 / 48.75 )^2 = 0.05 <= 1.0 (OK)
Total Axial Stress on Bottom of Section with Tension Axial Load = ABS(1.42 + 0.95 + -1.40) = 0.97 ksi
Stress Interaction at Bottom of Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (6.68 / 29.25)^2 + (0.97 / 48.75 )^2 = 0.05 <= 1.0 (OK)
Total Axial Stress on Top of Section with Compression Axial Load = ABS(-1.42 + -0.95 + -1.40) = 3.77 ksi
Stress Interaction at Top of Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (6.68 / 29.25)^2 + (3.77 / 48.75 )^2 = 0.06 <= 1.0 (OK)
Total Axial Stress on Bottom of Section with Compression Axial Load = ABS(1.42 + -0.95 + 1.40) = 1.87 ksi
Stress Interaction at Bottom of Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (6.68 / 29.25)^2 + (1.87 / 48.75 )^2 = 0.05 <= 1.0 (OK) |
| Double Angles Bolted Bolted Calcs: |
Angle1
Support Angle Leg
Gross Area = 0.31 * 11.50 = 3.60 in^2
Net Area = (11.50 - (4 *(0.94 + 1/16)) * 0.31 = 2.35 in^2
Using Eq.J4-3:
Shear Yielding = (phi) * 0.6 * Fya * [Gross Area] = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using Eq.J4-4:
Shear Rupture = (phi) * 0.6 * Fua * [Net Area] = 0.75 * 0.6 * 65.00 * 2.35 = 68.67 kips
Block Shear
Using Eq.J4-5:
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (11.5 - 1.25) = 10.25 in.
Net Shear Length = 10.2 - (3.5 * (0.938 + 1/16)) = 6.75 in.
Gross Tension Length = [edge dist.] = 1.75 in.
Net Tension Length = (1.75 - (1.12 + 1/16)/2) = 1.15 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 6.75) + (1.00 * 65.00 * 1.15)) = 79.37 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.15)) = 89.75 kips
Block Shear = 79.37 kips
Check Angle Prying (eliminate prying action) Per AISC 9-20 at Shear and Axial :
Gage ratio: gage1 ratio = gage2 / (gage1 + gage2) = 3.5 / (3.5 + 3.5) = 0.5
frt = axial reaction * gage1 ratio / no of rows / bolt_area = 10.00 * 0.50 / 4.00 / 0.60 = 2.08 ksi
frv = vertical reaction * gage1 ratio / #bolts / bolt_area = 70.00 * 0.50 / 4 / 0.60 = 14.55 ksi
Required tension stress (frt) = 2.079 ksi is not greater than 30% of total available Tension Stress (0.3 * Fnt = 27.000 ksi)
Required shear stress (frv) = 14.551 ksi is not greater than 30% of total available Shear Stress (0.3 * Fnv = 16.200 ksi)
F'nt = 90.000 ksi
T = axial tension * gage1 ratio / no of rows = 10.00 * 0.5 / 4.00 = 1.25 kips per bolt
V = reaction * gage1 ratio / num bolts angle = 70.00 * 0.5 / 4 = 8.75 kips per bolt
a = (angle leg + tw/2) - gage = (5.00 + 0.49/2) - 3.50 = 1.75 in.
b = (angle leg - tang/2) - a = (5.00 - 0.31/2) - 1.75 = 3.10 in.
b' = b - db/2 = 3.10 - 0.88/2 = 2.66 in.
Tributary Length due to b at 45 deg, 2b (edge bolt) = Min(2 * b, b + edge dist) = Min(2 * 3.10, 3.10 + 1.25) = 4.35 in.
Tributary Length, s (edge bolt) = 0.5 * spacing + edge dist = 0.5 * 3.00 + 1.25 = 2.75 in.
For p = Min(s, 2b) = Min(2.75, 4.35) = 2.75 in.
tmin1 = sqrt(4 * T * b' / (phi * p * Fu)) = sqrt(4 * 1.25 * 2.66 / (0.90 * 2.75 * 65.00)) = 0.29 in.
Tributary Length due to b at 45 deg, 2b (spacing bolt) = 2 * 3.10 = 6.20 in.
Tributary Length, s (spacing bolt) = 3.00 in.
For p = Min(s, 2b) = Min(3.00, 6.20) = 3.00 in.
tmin2 = sqrt(4 * T * b' / (phi * p * Fu)) = sqrt(4 * 1.25 * 2.66 / (0.90 * 3.00 * 65.00)) = 0.28 in.
Beam Angle Leg
Gross Area = 0.31 * 11.50 = 3.60 in^2
Net Area = (11.50 - (4 *(0.94 + 1/16)) * 0.31 = 2.35 in^2
Using Eq.J4-3:
Shear Yielding = (phi) * 0.6 * Fya * [Gross Area] = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using Eq.J4-4:
Shear Rupture = (phi) * 0.6 * Fua * [Net Area] = 0.75 * 0.6 * 65.00 * 2.35 = 68.67 kips
Block Shear
Using Eq.J4-5:
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (11.5 - 1.25) = 10.25 in.
Net Shear Length = 10.2 - (3.5 * (0.938 + 1/16) = 6.75 in.
Gross Tension Length = [edge dist.] = 1.50 in.
Net Tension Length = (1.5 - (0.938 + 1/16)/2) = 1.00 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 6.75) + (1.00 * 65.00 * 1.00)) = 77.06 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.00)) = 87.45 kips
Block Shear = 77.06 kips
Block 1 (Axial):
Gross Shear Length = [edge dist.] = 1.50 in.
Net Shear Length = (1.5 - (0.938 + 1/16)/2) = 1.00 in.
Gross Tension Length = (11.5 - 1.25) = 10.25 in.
Net Tension Length = 10.2 - (3.5 * (0.938 + 1/16) = 6.75 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 1.00) + (1.00 * 65.00 * 6.75)) = 112.15 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 1.50) + (1.00 * 65.00 * 6.75)) = 113.56 kips
Block Shear = 112.15 kips
Block 2 (Axial):
Gross Shear Length = 2 * [edge dist.] = 3.00 in.
Net Shear Length = 2 * (1.5 - (0.938 + 1/16)/2) = 2.00 in.
Gross Tension Length = (4 - 1) * 3 = 9.00 in.
Net Tension Length = 9 - (4 - 1) * (0.938 + 1/16)) = 6.00 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 2.00) + (1.00 * 65.00 * 6.00)) = 109.87 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 3.00) + (1.00 * 65.00 * 6.00)) = 112.68 kips
Block Shear = 109.87 kips
Block Shear Axial Total = min(Block Shear (1) Axial, Block Shear (2) Axial) = min(112.15, 109.87) = 109.87 kips
At Axial Loading:
Check Shear and Tension Interaction Block Shear:
(35.00/77.06)^2 + (5.00/109.87)^2 = 0.21 <= 1 (OK)
Tensile Strength:
Angle depth * tw = 11.500 * 0.313 = 3.599 in^2
Using Equation J4-1 on p.16.1-128:
Tension Yielding = phi * Fya * Ag = 0.90 * 50.00 * 3.60 = 161.98 kips
U = 1
Effective Tension Area, Ae = U * [Net Tension Area] = 1 * (3.599 - 1.252) = 2.348 in^2
Using Equation J4-2 on p.16.1-128:
Tension Rupture = phi * Fua * Ae = 0.75 * 65.00 * 2.35 = 114.44 kips
Compression Strength:
radius of gyration = t/(12^0.5) = 0.313 / 3.46 = 0.0904 in.
KL/r = 1.20 * 2.00 / 0.09 = 26.56
KL/r > 25
Fe = E * pi^2 / (KL/r)^2 = 29000.00 * pi^2 / (26.56)^2 = 405.68 ksi
When KL/r <= 4.71 * (E/(Qs * Fya))^0.5
Fcr = (0.658^(Fya / Fe)) * Fya = (0.66^(50.00 / 405.68)) * 50.00 = 47.49 ksi
Compression Strength = min(Fcr,Fya) * Agangle * phi = 47.49 * 3.60 * 0.90 = 153.83 kips
Angle2
Support Angle Leg
Gross Area = 0.31 * 11.50 = 3.60 in^2
Net Area = (11.50 - (4 *(0.94 + 1/16)) * 0.31 = 2.35 in^2
Using Eq.J4-3:
Shear Yielding = (phi) * 0.6 * Fya * [Gross Area] = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using Eq.J4-4:
Shear Rupture = (phi) * 0.6 * Fua * [Net Area] = 0.75 * 0.6 * 65.00 * 2.35 = 68.67 kips
Block Shear
Using Eq.J4-5:
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (11.5 - 1.25) = 10.25 in.
Net Shear Length = 10.2 - (3.5 * (0.938 + 1/16)) = 6.75 in.
Gross Tension Length = [edge dist.] = 1.75 in.
Net Tension Length = (1.75 - (1.12 + 1/16)/2) = 1.15 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 6.75) + (1.00 * 65.00 * 1.15)) = 79.37 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.15)) = 89.75 kips
Block Shear = 79.37 kips
Check Angle Prying (eliminate prying action) Per AISC 9-20 at Shear and Axial :
Gage ratio: gage2 ratio = gage1 / (gage1 + gage2) = 3.5 / (3.5 + 3.5) = 0.5
frt = axial reaction * gage2 ratio / no of rows / bolt_area = 10.00 * 0.50 / 4.00 / 0.60 = 2.08 ksi
frv = vertical reaction * gage2 ratio / #bolts / bolt_area = 70.00 * 0.50 / 4 / 0.60 = 14.55 ksi
Required tension stress (frt) = 2.079 ksi is not greater than 30% of total available Tension Stress (0.3 * Fnt = 27.000 ksi)
Required shear stress (frv) = 14.551 ksi is not greater than 30% of total available Shear Stress (0.3 * Fnv = 16.200 ksi)
F'nt = 90.000 ksi
T = axial tension * gage2 ratio / no of rows = 10.00 * 0.5 / 4.00 = 1.25 kips per bolt
V = reaction * gage2 ratio / num bolts angle = 70.00 * 0.5 / 4 = 8.75 kips per bolt
a = (angle leg + tw/2) - gage = (5.00 + 0.49/2) - 3.50 = 1.75 in.
b = (angle leg - tang/2) - a = (5.00 - 0.31/2) - 1.75 = 3.10 in.
b' = b - db/2 = 3.10 - 0.88/2 = 2.66 in.
Tributary Length due to b at 45 deg, 2b (edge bolt) = Min(2 * b, b + edge dist) = Min(2 * 3.10, 3.10 + 1.25) = 4.35 in.
Tributary Length, s (edge bolt) = 0.5 * spacing + edge dist = 0.5 * 3.00 + 1.25 = 2.75 in.
For p = Min(s, 2b) = Min(2.75, 4.35) = 2.75 in.
tmin1 = sqrt(4 * T * b' / (phi * p * Fu)) = sqrt(4 * 1.25 * 2.66 / (0.90 * 2.75 * 65.00)) = 0.29 in.
Tributary Length due to b at 45 deg, 2b (spacing bolt) = 2 * 3.10 = 6.20 in.
Tributary Length, s (spacing bolt) = 3.00 in.
For p = Min(s, 2b) = Min(3.00, 6.20) = 3.00 in.
tmin2 = sqrt(4 * T * b' / (phi * p * Fu)) = sqrt(4 * 1.25 * 2.66 / (0.90 * 3.00 * 65.00)) = 0.28 in.
Beam Angle Leg
Gross Area = 0.31 * 11.50 = 3.60 in^2
Net Area = (11.50 - (4 *(0.94 + 1/16)) * 0.31 = 2.35 in^2
Using Eq.J4-3:
Shear Yielding = (phi) * 0.6 * Fya * [Gross Area] = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using Eq.J4-4:
Shear Rupture = (phi) * 0.6 * Fua * [Net Area] = 0.75 * 0.6 * 65.00 * 2.35 = 68.67 kips
Block Shear
Using Eq.J4-5:
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (11.5 - 1.25) = 10.25 in.
Net Shear Length = 10.2 - (3.5 * (0.938 + 1/16) = 6.75 in.
Gross Tension Length = [edge dist.] = 1.50 in.
Net Tension Length = (1.5 - (0.938 + 1/16)/2) = 1.00 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 6.75) + (1.00 * 65.00 * 1.00)) = 77.06 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.00)) = 87.45 kips
Block Shear = 77.06 kips
Block 1 (Axial):
Gross Shear Length = [edge dist.] = 1.50 in.
Net Shear Length = (1.5 - (0.938 + 1/16)/2) = 1.00 in.
Gross Tension Length = (11.5 - 1.25) = 10.25 in.
Net Tension Length = 10.2 - (3.5 * (0.938 + 1/16) = 6.75 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 1.00) + (1.00 * 65.00 * 6.75)) = 112.15 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 1.50) + (1.00 * 65.00 * 6.75)) = 113.56 kips
Block Shear = 112.15 kips
Block 2 (Axial):
Gross Shear Length = 2 * [edge dist.] = 3.00 in.
Net Shear Length = 2 * (1.5 - (0.938 + 1/16)/2) = 2.00 in.
Gross Tension Length = (4 - 1) * 3 = 9.00 in.
Net Tension Length = 9 - (4 - 1) * (0.938 + 1/16)) = 6.00 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 2.00) + (1.00 * 65.00 * 6.00)) = 109.87 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 3.00) + (1.00 * 65.00 * 6.00)) = 112.68 kips
Block Shear = 109.87 kips
Block Shear Axial Total = min(Block Shear (1) Axial, Block Shear (2) Axial) = min(112.15, 109.87) = 109.87 kips
At Axial Loading:
Check Shear and Tension Interaction Block Shear:
(35.00/77.06)^2 + (5.00/109.87)^2 = 0.21 <= 1 (OK)
Tensile Strength:
Angle depth * tw = 11.500 * 0.313 = 3.599 in^2
Using Equation J4-1 on p.16.1-128:
Tension Yielding = phi * Fya * Ag = 0.90 * 50.00 * 3.60 = 161.98 kips
U = 1
Effective Tension Area, Ae = U * [Net Tension Area] = 1 * (3.599 - 1.252) = 2.348 in^2
Using Equation J4-2 on p.16.1-128:
Tension Rupture = phi * Fua * Ae = 0.75 * 65.00 * 2.35 = 114.44 kips
Compression Strength:
radius of gyration = t/(12^0.5) = 0.313 / 3.46 = 0.0904 in.
KL/r = 1.20 * 2.00 / 0.09 = 26.56
KL/r > 25
Fe = E * pi^2 / (KL/r)^2 = 29000.00 * pi^2 / (26.56)^2 = 405.68 ksi
When KL/r <= 4.71 * (E/(Qs * Fya))^0.5
Fcr = (0.658^(Fya / Fe)) * Fya = (0.66^(50.00 / 405.68)) * 50.00 = 47.49 ksi
Compression Strength = min(Fcr,Fya) * Agangle * phi = 47.49 * 3.60 * 0.90 = 153.83 kips
Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(215.97 , 215.97) = 215.97 kips
215.97 kips >= Reaction V = 70.00 kips (OK)
Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(137.332 , 137.332) = 137.332 kips
137.33 kips >= Reaction V = 70.00 kips (OK)
Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(158.733 , 158.733) = 158.733 kips
158.73 kips >= Reaction V = 70.00 kips (OK)
Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(215.97 , 215.97) = 215.97 kips
215.97 kips >= Reaction V = 70.00 kips (OK)
Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(137.332 , 137.332) = 137.332 kips
137.33 kips >= Reaction V = 70.00 kips (OK)
Total Beam Side Vertical Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(154.117 , 154.117) = 154.117 kips
154.12 kips >= Reaction V = 70.00 kips (OK)
Total Beam Side Axial Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(219.731 , 219.731) = 219.731 kips
219.73 kips >= Axial T/C = 10.00 kips (OK)
Total Beam Side Tension Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(323.955 , 323.955) = 323.955 kips
323.96 kips >= Axial T/C = 10.00 kips (OK)
Total Beam Side Tension Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(228.887 , 228.887) = 228.887 kips
228.89 kips >= Axial T/C = 10.00 kips (OK)
Total Beam Side Compression Capacity = min (CompressionAngle1/Gage1 Ratio ,CompressionAngle2/Gage2 Ratio ) = min(307.667 , 307.667) = 307.667 kips
307.67 kips >= Axial C = 10.00 kips (OK)
Yield Line Analysis at Support Web:
Mp = Fy * tw^2/4 = 50.000 * 0.545^2 / 4 = 3.713 kips-in/in
Open web depth at support, T = d - 2 * kdes = 26.980 in.
Connection line along support web (perpendicular to T), g = 7.000 in.
Offset at connection line from flange1, a = 1.840 in.
Offset at connection line from flange2, b = 16.140 in.
Verify Yield Line Capacity Applicability, (a >= twgird AND b >= twgird) = 1.84 >= 0.545 AND 16.1 >= 0.545 = OK
Local Bending, Pu = phi * Mp * [4 * (2 * T * a * b * (a + b))^0.5 + g * (a + b)] / a / b
phi * Pu = 0.900 * 3.713 * (4 * (2 * 26.980 * 1.840 * 16.140 * (1.840 + 16.140))^0.5 + 7.000 * (1.840 + 16.140)) / 1.840 / 16.140 = 90.558 kips
90.56 kips >= 10.00 kips (OK, Axial T/C) |
| Weld Calcs: |
(Not applicable / No results ) |