BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.55, -0.00)
At Row 1, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam = <14.20, 7.23>
Lcsbm at Beam spacing = 2.94 in.
Lcebm at Beam edge = 6.15 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.32/1) * 65.00 = 36.11 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 6.15 * (0.32/1) * 65.00 = 75.51 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(36.11, 75.51, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <-14.20, -7.23>
Lcsshpl at Shear Plate spacing = 2.87 in.
Lceshpl at Shear Plate edge = 9.89 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.38 * 65.00 = 42.02 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.89 * 0.38 * 65.00 = 144.61 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(42.02, 144.61, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 25.594) = 21.50 kips/bolt
Bolt Shear Demand to Bearing ratio = 21.50 / 15.94 = 1.35
At Row 1, At Column 2:
Ribolt = 15.80 kips
Ri vector at Beam = <15.80, 0.14>
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 338.49 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.32/1) * 65.00 = 25.34 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 338.49 * (0.32/1) * 65.00 = 4158.35 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(25.34, 4158.35, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <-15.80, -0.14>
Lcsshpl at Shear Plate spacing = 1.88 in.
Lceshpl at Shear Plate edge = 11.81 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.88 * 0.38 * 65.00 = 27.42 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 11.81 * 0.38 * 65.00 = 172.76 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(27.42, 172.76, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 25.594) = 21.50 kips/bolt
Bolt Shear Demand to Bearing ratio = 21.50 / 15.80 = 1.36
At Row 2, At Column 1:
Ribolt = 15.18 kips
Ri vector at Beam = <10.64, 10.83>
Lcsbm at Beam spacing = 2.94 in.
Lcebm at Beam edge = 7.94 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.32/1) * 65.00 = 36.11 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 7.94 * (0.32/1) * 65.00 = 97.58 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(36.11, 97.58, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <-10.64, -10.83>
Lcsshpl at Shear Plate spacing = 2.87 in.
Lceshpl at Shear Plate edge = 12.72 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.38 * 65.00 = 42.02 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.72 * 0.38 * 65.00 = 186.01 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(42.02, 186.01, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 25.594) = 21.50 kips/bolt
Bolt Shear Demand to Bearing ratio = 21.50 / 15.18 = 1.42
At Row 2, At Column 2:
Ribolt = 14.16 kips
Ri vector at Beam = <14.16, 0.25>
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 338.54 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.32/1) * 65.00 = 25.34 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 338.54 * (0.32/1) * 65.00 = 4158.94 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(25.34, 4158.94, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <-14.16, -0.25>
Lcsshpl at Shear Plate spacing = 1.88 in.
Lceshpl at Shear Plate edge = 11.81 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.88 * 0.38 * 65.00 = 27.42 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 11.81 * 0.38 * 65.00 = 172.78 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(27.42, 172.78, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 25.594) = 21.50 kips/bolt
Bolt Shear Demand to Bearing ratio = 21.50 / 14.16 = 1.52
At Row 3, At Column 1:
Ribolt = 14.22 kips
Ri vector at Beam = <0.00, 14.22>
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 8.53 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.32/1) * 65.00 = 25.34 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 8.53 * (0.32/1) * 65.00 = 104.81 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(25.34, 104.81, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <-0.00, -14.22>
Lcsshpl at Shear Plate spacing = 2.06 in.
Lceshpl at Shear Plate edge = 6.78 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.06 * 0.38 * 65.00 = 30.16 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.78 * 0.38 * 65.00 = 99.18 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(30.16, 99.18, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 25.594) = 21.50 kips/bolt
Bolt Shear Demand to Bearing ratio = 21.50 / 14.22 = 1.51
At Row 3, At Column 2:
Ribolt = 2.20 kips
Ri vector at Beam = <0.01, 2.20>
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 8.53 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.32/1) * 65.00 = 25.34 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 8.53 * (0.32/1) * 65.00 = 104.81 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(25.34, 104.81, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <-0.01, -2.20>
Lcsshpl at Shear Plate spacing = 2.06 in.
Lceshpl at Shear Plate edge = 6.78 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.06 * 0.38 * 65.00 = 30.16 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.78 * 0.38 * 65.00 = 99.18 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(30.16, 99.18, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 25.594) = 21.50 kips/bolt
Bolt Shear Demand to Bearing ratio = 21.50 / 2.20 = 9.76
At Row 4, At Column 1:
Ribolt = 15.18 kips
Ri vector at Beam = <-10.64, 10.83>
Lcsbm at Beam spacing = 2.94 in.
Lcebm at Beam edge = 2.03 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.32/1) * 65.00 = 36.11 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.03 * (0.32/1) * 65.00 = 24.92 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(36.11, 24.92, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <10.64, -10.83>
Lcsshpl at Shear Plate spacing = 2.87 in.
Lceshpl at Shear Plate edge = 5.30 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.38 * 65.00 = 42.02 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 5.30 * 0.38 * 65.00 = 77.53 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(42.02, 77.53, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 25.594) = 21.50 kips/bolt
Bolt Shear Demand to Bearing ratio = 21.50 / 15.18 = 1.42
At Row 4, At Column 2:
Ribolt = 14.16 kips
Ri vector at Beam = <-14.16, 0.25>
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 4.28 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.32/1) * 65.00 = 25.34 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.28 * (0.32/1) * 65.00 = 52.60 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(25.34, 52.60, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <14.16, -0.25>
Lcsshpl at Shear Plate spacing = 1.88 in.
Lceshpl at Shear Plate edge = 1.19 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.88 * 0.38 * 65.00 = 27.42 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.19 * 0.38 * 65.00 = 17.37 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(27.42, 17.37, 25.59) = 17.37 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 17.370) = 17.37 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.37 / 14.16 = 1.23
At Row 5, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam = <-14.20, 7.23>
Lcsbm at Beam spacing = 2.94 in.
Lcebm at Beam edge = 1.49 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.94 * (0.32/1) * 65.00 = 36.11 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.49 * (0.32/1) * 65.00 = 18.36 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(36.11, 18.36, 21.50) = 18.36 kips/bolt
Ri vector at Shear Plate = <14.20, -7.23>
Lcsshpl at Shear Plate spacing = 2.87 in.
Lceshpl at Shear Plate edge = 2.13 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.87 * 0.38 * 65.00 = 42.02 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.13 * 0.38 * 65.00 = 31.08 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(42.02, 31.08, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(18.364, 25.594) = 18.36 kips/bolt
Bolt Shear Demand to Bearing ratio = 18.36 / 15.94 = 1.15
At Row 5, At Column 2:
Ribolt = 15.80 kips
Ri vector at Beam = <-15.80, 0.14>
Lcsbm at Beam spacing = 2.06 in.
Lcebm at Beam edge = 4.28 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.06 * (0.32/1) * 65.00 = 25.34 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.28 * (0.32/1) * 65.00 = 52.60 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.32/1) * 65.00 = 21.50 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(25.34, 52.60, 21.50) = 21.50 kips/bolt
Ri vector at Shear Plate = <15.80, -0.14>
Lcsshpl at Shear Plate spacing = 1.88 in.
Lceshpl at Shear Plate edge = 1.19 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.88 * 0.38 * 65.00 = 27.42 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.19 * 0.38 * 65.00 = 17.37 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(27.42, 17.37, 25.59) = 17.37 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.499, 17.368) = 17.37 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.37 / 15.80 = 1.10
Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
= min(1.00, 1.35, 1.36, 1.42, 1.52, 1.51, 9.76, 1.42, 1.23, 1.15,
1.10) = 1.00
BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 53.31 = 53.31 kips
Rbv = 53.31 kips >= V = 29.00 kips (OK) |