BOLT BEARING AT BEAM AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.19 in.
Lcebm at Beam edge = 2.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.59 * (0.30/2) * 65.00 = 23.14 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 23.14, 13.38) = 13.38 kips/bolt
Lcsang1 at Angle 1 spacing = 2.19 in.
Lceang1 at Angle 1 edge = 9.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.84 * 0.31 * 65.00 = 180.25 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 180.25, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.19 in.
Lcebm at Beam edge = 5.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.59 * (0.30/2) * 65.00 = 49.90 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 49.90, 13.38) = 13.38 kips/bolt
Lcsang1 at Angle 1 spacing = 2.19 in.
Lceang1 at Angle 1 edge = 6.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.84 * 0.31 * 65.00 = 125.32 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 125.32, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.19 in.
Lcebm at Beam edge = 8.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 8.59 * (0.30/2) * 65.00 = 76.67 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 76.67, 13.38) = 13.38 kips/bolt
Lcsang1 at Angle 1 spacing = 2.19 in.
Lceang1 at Angle 1 edge = 3.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.84 * 0.31 * 65.00 = 70.38 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 70.38, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.19 in.
Lcebm at Beam edge = 11.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 11.59 * (0.30/2) * 65.00 = 103.43 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 103.43, 13.38) = 13.38 kips/bolt
Lcsang1 at Angle 1 spacing = 2.19 in.
Lceang1 at Angle 1 edge = 0.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.84 * 0.31 * 65.00 = 15.45 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 15.45, 27.47) = 15.45 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 13.38, 15.45) = 13.38 kips/bolt
Bearing Capacity at Beam and Angle for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 13.38 + 13.38 + 13.38 + 13.38 = 53.53 kips
BOLT BEARING AT BEAM AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.19 in.
Lcebm at Beam edge = 2.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.59 * (0.30/2) * 65.00 = 23.14 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 23.14, 13.38) = 13.38 kips/bolt
Lcsang2 at Angle 2 spacing = 2.19 in.
Lceang2 at Angle 2 edge = 9.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.84 * 0.31 * 65.00 = 180.25 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 180.25, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.19 in.
Lcebm at Beam edge = 5.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.59 * (0.30/2) * 65.00 = 49.90 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 49.90, 13.38) = 13.38 kips/bolt
Lcsang2 at Angle 2 spacing = 2.19 in.
Lceang2 at Angle 2 edge = 6.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.84 * 0.31 * 65.00 = 125.32 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 125.32, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.19 in.
Lcebm at Beam edge = 8.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 8.59 * (0.30/2) * 65.00 = 76.67 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 76.67, 13.38) = 13.38 kips/bolt
Lcsang2 at Angle 2 spacing = 2.19 in.
Lceang2 at Angle 2 edge = 3.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.84 * 0.31 * 65.00 = 70.38 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 70.38, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.19 in.
Lcebm at Beam edge = 11.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 11.59 * (0.30/2) * 65.00 = 103.43 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 103.43, 13.38) = 13.38 kips/bolt
Lcsang2 at Angle 2 spacing = 2.19 in.
Lceang2 at Angle 2 edge = 0.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.84 * 0.31 * 65.00 = 15.45 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 15.45, 27.47) = 15.45 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 13.38, 15.45) = 13.38 kips/bolt
Bearing Capacity at Beam and Angle for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 13.38 + 13.38 + 13.38 + 13.38 = 53.53 kips
BEARING AT BEAM AND ANGLE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv
= Min(Sum{ Bearing at side 1 [(Row)i,(Column)i] } / gage1 ratio,
Sum{ Bearing at side 2 [(Row)i,(Column)i] } / gage2 ratio )
= Min( 53.53/ 0.50, 53.53/ 0.50 ) = 107.06 kips
Rbv = 107.06 kips >= Reaction V = 2.00 kips (OK) |
Angle1
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 11.50 = 3.60 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 65.00 * 3.60 = 105.29 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 3.15
Zgross = 10.35 in^3
Znet = 10.35 in^3
Sgross = 6.90 in^3
Snet = 6.90 in^3
Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 50.00 * 6.90 / 3.15 = 98.48 kips
Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 10.35 / 3.15 = 160.03 kips
Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 11.50 in.
c = 3.00 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 11.50 * 50.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (11.50/3.00)^2 )^0.5) = 0.38
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi
Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 45.00 * 6.90 / 3.15 = 98.48 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (11.50 - (4 * (0.81 + 1/16))) * 0.31 = 2.50 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.50 = 73.24 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (11.50 - 1.25) = 10.25 in.
Net Shear Length = 10.25 - (3.50 * (0.81 + 1/16) = 7.19 in.
Gross Tension Length = [edge dist.] = 2.00 in.
Net Tension Length = (2.00 - (1.00 + 1/16)/2) = 1.47 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 7.19) + (1.00 * 65.00 * 1.47)) = 88.22 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.47)) = 94.60 kips
Block Shear = 88.22 kips
Block Shear for Axial T/C is not required.
Angle2
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 11.50 = 3.60 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 65.00 * 3.60 = 105.29 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 3.15
Zgross = 10.35 in^3
Znet = 10.35 in^3
Sgross = 6.90 in^3
Snet = 6.90 in^3
Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 50.00 * 6.90 / 3.15 = 98.48 kips
Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 10.35 / 3.15 = 160.03 kips
Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 11.50 in.
c = 3.00 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 11.50 * 50.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (11.50/3.00)^2 )^0.5) = 0.38
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi
Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 45.00 * 6.90 / 3.15 = 98.48 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (11.50 - (4 * (0.81 + 1/16))) * 0.31 = 2.50 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.50 = 73.24 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (11.50 - 1.25) = 10.25 in.
Net Shear Length = 10.25 - (3.50 * (0.81 + 1/16) = 7.19 in.
Gross Tension Length = [edge dist.] = 2.00 in.
Net Tension Length = (2.00 - (1.00 + 1/16)/2) = 1.47 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 65.00 * 7.19) + (1.00 * 65.00 * 1.47)) = 88.22 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.47)) = 94.60 kips
Block Shear = 88.22 kips
Block Shear for Axial T/C is not required.
Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(215.97 , 215.97) = 215.97 kips
215.97 kips >= Reaction V = 2.00 kips (OK)
Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(210.58 , 210.58) = 210.58 kips
210.58 kips >= Reaction V = 2.00 kips (OK)
Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(215.97 , 215.97) = 215.97 kips
215.97 kips >= Reaction V = 2.00 kips (OK)
Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(146.49 , 146.49) = 146.49 kips
146.49 kips >= Reaction V = 2.00 kips (OK)
Total Support Side Flexure Yielding Capacity = min (FlexureYieldAngle1/Gage1 Ratio , FlexureYieldAngle2/Gage2 Ratio) = min(196.96 , 196.96) = 196.96 kips
196.96 kips >= Reaction V = 2.00 kips (OK)
Total Support Side Flexure Rupture Capacity = min (FlexureRuptureAngle1/Gage1 Ratio , FlexureRuptureAngle2/Gage2 Ratio) = min(320.07 , 320.07) = 320.07 kips
320.07 kips >= Reaction V = 2.00 kips (OK)
Total Support Side Bending Buckling Capacity = min (BendingBucklingAngle1/Gage1 Ratio , BendingBucklingAngle2/Gage2 Ratio) = min(196.96 , 196.96) = 196.96 kips
196.96 kips >= Reaction V = 2.00 kips (OK)
Total Beam Side Vertical Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(176.43 , 176.43) = 176.43 kips
176.43 kips >= Reaction V = 2.00 kips (OK) |
Angles Welded to Support:
'B' Type Welds - Using Equation 10-1, p.10-11:
(phi) * Rn = (2 * (1.39 * D * L / (1 + (12.96 * e^2 /L^2) ) ^ .5)
Angle1 Girder Weld:
Rotational Ductility Check not required as the Leg thickness not greater than 5/8
Dmax1 using min(eqn 9-2, tang - 0.06)
= min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06)
= min(0.31 * 65.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06)
= min(6.58, 4.01)
= 4.01
Dmax2 (using eqn 9-2)
= tfsupport * Fusupport / ( Fexx * C1 * 0.04 )
= 0.76 * 65.00 / ( 70.00 * 1.00 * 0.04 )
= 15.97
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 15.97, 12.00)
= 4.01
Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16
(phi) * Rn = 1.39 * 4.00 * 11.50 / ( 1 + (12.96 * 9.00 / 132.25))^0.5 = 46.68 kips
Angle2 Girder Weld:
Rotational Ductility Check not required as the Leg thickness not greater than 5/8
Dmax1 using min(eqn 9-2, tang - 0.06)
= min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06)
= min(0.31 * 65.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06)
= min(6.58, 4.01)
= 4.01
Dmax2 (using eqn 9-2)
= tfsupport * Fusupport / ( Fexx * C1 * 0.04 )
= 0.76 * 65.00 / ( 70.00 * 1.00 * 0.04 )
= 15.97
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 15.97, 12.00)
= 4.01
Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16
(phi) * Rn = 1.39 * 4.00 * 11.50 / ( 1 + (12.96 * 9.00 / 132.25))^0.5 = 46.68 kips
Total Weld Strength = min ( Angle1 Weld Strength/Gage Ratio at Angle1 , Angle2 Weld Strength/Gage Ratio at Angle2 ) = min (93.36 , 93.36) = 93.36 kips |