Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bcf.2bw.s.00001.00001
 
Main Calcs:
DOUBLE ANGLES Bolted to Beam, Welded to Support CONNECTION SUMMARY

NOTE: DESIGNED WITH MEMBERS CHOSEN ON ONLY ONE SIDE OF SUPPORT

Column Flange profile: W16X77
Filler Beam profile: W16X40
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: 0.00
Horizontal Offset: 0.00
Span: 2.00 ft.
Reaction, V: 2.00 kips
Shear Capacity, Rn: 93.36 kips
Design/Reference according to AISC 14th Ed. - LRFD
Beam material grade: A992
Support material grade: A992
Angle material grade: A529-GR.50
Weld grade: E70
Angle1 Profile: L4X3X5/16
       Length = 11.50 in.
       Beam side bolts: 4 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Beam side bolt vertical spacing: 3.00 in.
Angle2 Profile: L4X3X5/16
       Length = 11.50 in.
       Beam side bolts: 4 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Beam side bolt vertical spacing: 3.00 in.

Configuration Geometry:
Weld Size at Angle 1 Support Weld:
4/16 FILLET
Weld Size at Angle 2 Support Weld:
4/16 FILLET

Beam setback = 0.50 in.
Edge distance at vertical edge of beam: 1.50 in.
Edge distance at bottom edge of beam: 2.75 in.
Bottom cope depth: 1.25 in.
Bottom cope length: 4.00 in.

Horizontal distance to first hole: 2.00 in.

Bolted Angle Leg At Beam : 
Angle 1 Leg Distances : 
   Down distance from top of filler beam flange : 3.00 in.
   Edge distance at vertical edge : 2.00 in.
   Edge distance at top edge : 1.25 in.
   Edge distance at bottom edge : 1.25 in.

Angle 2 Leg Distances : 
   Down distance from top of filler beam flange : 3.00 in.
   Edge distance at vertical edge : 2.00 in.
   Edge distance at top edge : 1.25 in.
   Edge distance at bottom edge : 1.25 in.

Holes in Beam Web : STD diameter = 0.81 in.
Holes in Beam Angle Leg : SSL slot width = 0.81 in., slot length = 1.00 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND ANGLE 1 SIDE:
At Angle 1 side:
Bolt Shear Capacity at Shear Load Only:
C = no of bolts = 4.00
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 17.89 * 4.00 = 71.57 kips


BOLT SHEAR CAPACITY AT BEAM AND ANGLE 2 SIDE:
At Angle 2 side:
Bolt Shear Capacity at Shear Load Only:
C = no of bolts = 4.00
Using Table 7-1 to determine (phi)rn:
(phi)Rn = (phi)rn * C = 17.89 * 4.00 = 71.57 kips


Total Vertical Bolt Shear Capacity = 
 = min(Shear Load Only at Angle 1 side/gage1 ratio, 
       Shear Load Only at Angle 2 side/gage2 ratio) = 
 = min(71.57/0.50, 71.57/0.50) = 143.14 kips
143.14 kips >= Reaction V = 2.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 2.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.59 * (0.30/2) * 65.00 = 23.14 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 23.14, 13.38) = 13.38 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 9.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.84 * 0.31 * 65.00 = 180.25 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 180.25, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt

At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 5.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.59 * (0.30/2) * 65.00 = 49.90 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 49.90, 13.38) = 13.38 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 6.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.84 * 0.31 * 65.00 = 125.32 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 125.32, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt

At Row 3, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 8.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 8.59 * (0.30/2) * 65.00 = 76.67 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 76.67, 13.38) = 13.38 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 3.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.84 * 0.31 * 65.00 = 70.38 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 70.38, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt

At Row 4, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 11.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 11.59 * (0.30/2) * 65.00 = 103.43 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 103.43, 13.38) = 13.38 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 0.84 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.84 * 0.31 * 65.00 = 15.45 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(40.06, 15.45, 27.47) = 15.45 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 13.38, 15.45) = 13.38 kips/bolt

Bearing Capacity at Beam and Angle for vertical shear only
 = Sum{ Bearing At [(Row)i,(Column)i] }
 = 13.38 + 13.38 + 13.38 + 13.38 = 53.53 kips

BOLT BEARING AT BEAM AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 2.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.59 * (0.30/2) * 65.00 = 23.14 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 23.14, 13.38) = 13.38 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 9.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.84 * 0.31 * 65.00 = 180.25 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 180.25, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt

At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 5.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.59 * (0.30/2) * 65.00 = 49.90 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 49.90, 13.38) = 13.38 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 6.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.84 * 0.31 * 65.00 = 125.32 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 125.32, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt

At Row 3, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 8.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 8.59 * (0.30/2) * 65.00 = 76.67 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 76.67, 13.38) = 13.38 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 3.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.84 * 0.31 * 65.00 = 70.38 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 70.38, 27.47) = 27.47 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 13.38, 27.47) = 13.38 kips/bolt

At Row 4, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 11.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.19 * (0.30/2) * 65.00 = 19.52 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 11.59 * (0.30/2) * 65.00 = 103.43 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter   = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.30/2) * 65.00 = 13.38 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(19.52, 103.43, 13.38) = 13.38 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 0.84 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.19 * 0.31 * 65.00 = 40.06 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.84 * 0.31 * 65.00 = 15.45 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter   = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.31 * 65.00 = 27.47 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(40.06, 15.45, 27.47) = 15.45 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 13.38, 15.45) = 13.38 kips/bolt

Bearing Capacity at Beam and Angle for vertical shear only
 = Sum{ Bearing At [(Row)i,(Column)i] }
 = 13.38 + 13.38 + 13.38 + 13.38 = 53.53 kips


BEARING AT BEAM AND ANGLE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv
 = Min(Sum{ Bearing at side 1  [(Row)i,(Column)i] } / gage1 ratio, 
       Sum{ Bearing at side 2  [(Row)i,(Column)i] } / gage2 ratio )
 = Min( 53.53/ 0.50, 53.53/ 0.50 ) = 107.06 kips
Rbv = 107.06 kips >= Reaction V = 2.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 16.00 - 0.00 - 1.25 = 14.75 in.

Using AISC 14th Ed. Equation J4-3
Gross Area (Shear), Agross = [Web Depth] * tw = 14.75 * 0.30 = 4.50 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fybeam * Agross = 1.00 * 0.6 * 50.00 * 4.50 = 134.96 kips

Using AISC 14th Ed. Equation J4-4
Net Area (Shear), Anet = ([Web Depth] - ([# rows] * [Diameter + 0.06])) * tw 
    = (14.75 - (4 * 0.88)) * 0.30 = 3.43 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fubeam * Anet = 0.75 * 0.6 * 65.00 * 3.43 = 100.37 kips


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear for Reaction V is not required.

Block Shear for Axial T/C is not required.

Flexure at Longest Cope (Bottom Cope Only at Section)
Eccentricity at Section, e = 4.50 in.
Fy = 50.00 ksi
Snet1 (bolt holes not applicable) = 17.21 in^3
Snet2 (bolt holes applicable) = 17.21 in^3
Znet1 (bolt holes not applicable) = 31.30 in^3
Znet2 (bolt holes applicable) = 31.30 in^3

Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Snet1 / e = 0.90 * 50.00 * 17.21 / 4.50 = 172.14 kips

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet2 / e = 0.75 * 65.00 * 31.30 / 4.50 = 339.10 kips


Flexure at Furthest Bolt Line within Cope (Bottom Cope Only at Section)
Eccentricity at Section, e = 2.00 in.
Fy = 50.00 ksi
Snet1 (bolt holes not applicable) = 17.21 in^3
Snet2 (bolt holes applicable) = 14.18 in^3
Znet1 (bolt holes not applicable) = 31.30 in^3
Znet2 (bolt holes applicable) = 24.37 in^3

Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Snet1 / e = 0.90 * 50.00 * 17.21 / 2.00 = 387.31 kips

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet2 / e = 0.75 * 65.00 * 24.37 / 2.00 = 593.99 kips


Section Bending Strength Calculations Summary:

   Coped Beam Flexure at Longest Cope (Bottom Cope Only at Section)
   Flexural Yielding : 172.14 >= 2.00 kips (OK)
   Flexural Rupture : 339.10 >= 2.00 kips (OK)

   Coped Beam Flexure at Furthest Bolt Line within Cope (Bottom Cope Only at Section)
   Flexural Yielding : 387.31 >= 2.00 kips (OK)
   Flexural Rupture : 593.99 >= 2.00 kips (OK)
Double Angles Bolted Welded Calcs:
Angle1 

Support Angle Leg 


Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips

Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 11.50 = 3.60 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 65.00 * 3.60 = 105.29 kips


Flexural and Buckling Strength:

Eccentricity at Weld = 3.15
Zgross = 10.35 in^3
Znet   = 10.35 in^3
Sgross = 6.90 in^3
Snet   = 6.90 in^3

Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 50.00 * 6.90 / 3.15 = 98.48 kips

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 10.35 / 3.15 = 160.03 kips


Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 11.50 in.
c = 3.00 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 11.50 * 50.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (11.50/3.00)^2 )^0.5) = 0.38
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi

Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 45.00 * 6.90 / 3.15 = 98.48 kips

Beam Angle Leg 


Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips

Using AISC 14th Ed. Equation J4-4
Net Area, An = (11.50 - (4 * (0.81 + 1/16))) * 0.31 = 2.50 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.50 = 73.24 kips


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block 1 (Shear): 
Gross Shear Length = (11.50 - 1.25) = 10.25 in.
Net Shear Length = 10.25 - (3.50 * (0.81 + 1/16) = 7.19 in.
Gross Tension Length = [edge dist.] = 2.00 in.
Net Tension Length = (2.00 - (1.00 + 1/16)/2) = 1.47 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.75 * 0.31 * ((0.60 * 65.00 * 7.19) + (1.00 * 65.00 * 1.47)) = 88.22 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.47)) = 94.60 kips
Block Shear = 88.22 kips

Block Shear for Axial T/C is not required.


Angle2 

Support Angle Leg 


Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips

Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 11.50 = 3.60 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 65.00 * 3.60 = 105.29 kips


Flexural and Buckling Strength:

Eccentricity at Weld = 3.15
Zgross = 10.35 in^3
Znet   = 10.35 in^3
Sgross = 6.90 in^3
Snet   = 6.90 in^3

Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 50.00 * 6.90 / 3.15 = 98.48 kips

Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 65.00 * 10.35 / 3.15 = 160.03 kips


Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 11.50 in.
c = 3.00 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 11.50 * 50.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (11.50/3.00)^2 )^0.5) = 0.38
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 50.00 * 1.00 = 45.00 ksi

Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 45.00 * 6.90 / 3.15 = 98.48 kips

Beam Angle Leg 


Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 11.50 = 3.60 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 3.60 = 107.98 kips

Using AISC 14th Ed. Equation J4-4
Net Area, An = (11.50 - (4 * (0.81 + 1/16))) * 0.31 = 2.50 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 2.50 = 73.24 kips


Check Vertical Block Shear

Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block 1 (Shear): 
Gross Shear Length = (11.50 - 1.25) = 10.25 in.
Net Shear Length = 10.25 - (3.50 * (0.81 + 1/16) = 7.19 in.
Gross Tension Length = [edge dist.] = 2.00 in.
Net Tension Length = (2.00 - (1.00 + 1/16)/2) = 1.47 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.75 * 0.31 * ((0.60 * 65.00 * 7.19) + (1.00 * 65.00 * 1.47)) = 88.22 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.75 * 0.31 * ((0.60 * 50.00 * 10.25) + (1.00 * 65.00 * 1.47)) = 94.60 kips
Block Shear = 88.22 kips

Block Shear for Axial T/C is not required.


Total Support Side Shear Yielding Capacity =  min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) =  min(215.97 , 215.97) = 215.97 kips
215.97 kips >= Reaction V = 2.00 kips (OK)
Total Support Side Shear Rupture Capacity =  min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(210.58 , 210.58) = 210.58 kips
210.58 kips >= Reaction V = 2.00 kips (OK)
Total Beam Side Shear Yielding Capacity =  min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(215.97 , 215.97) = 215.97 kips
215.97 kips >= Reaction V = 2.00 kips (OK)
Total Beam Side Shear Rupture Capacity =  min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(146.49 , 146.49) = 146.49 kips
146.49 kips >= Reaction V = 2.00 kips (OK)
Total Support Side Flexure Yielding Capacity =  min (FlexureYieldAngle1/Gage1 Ratio , FlexureYieldAngle2/Gage2 Ratio) = min(196.96 , 196.96) = 196.96 kips
196.96 kips >= Reaction V = 2.00 kips (OK)
Total Support Side Flexure Rupture Capacity =  min (FlexureRuptureAngle1/Gage1 Ratio , FlexureRuptureAngle2/Gage2 Ratio) = min(320.07 , 320.07) = 320.07 kips
320.07 kips >= Reaction V = 2.00 kips (OK)
Total Support Side Bending Buckling Capacity =  min (BendingBucklingAngle1/Gage1 Ratio , BendingBucklingAngle2/Gage2 Ratio) = min(196.96 , 196.96) = 196.96 kips
196.96 kips >= Reaction V = 2.00 kips (OK)
Total Beam Side Vertical Block Shear Capacity =  min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(176.43 , 176.43) = 176.43 kips
176.43 kips >= Reaction V = 2.00 kips (OK)
Weld Calcs:
Angles Welded to Support:

'B' Type Welds - Using Equation 10-1, p.10-11:
(phi) * Rn = (2 * (1.39 * D * L / (1 + (12.96 * e^2 /L^2) ) ^ .5)

Angle1 Girder Weld:
Rotational Ductility Check not required as the Leg thickness not greater than 5/8
Dmax1 using min(eqn 9-2, tang - 0.06) 
 = min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06) 
 = min(0.31 * 65.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06) 
 = min(6.58, 4.01)
 = 4.01 
Dmax2 (using eqn 9-2)
 = tfsupport * Fusupport / ( Fexx * C1 * 0.04 )
 = 0.76 * 65.00 / ( 70.00 * 1.00 * 0.04 ) 
 = 15.97 
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 15.97, 12.00)
 = 4.01 

Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16
(phi) * Rn = 1.39 * 4.00 * 11.50 /  ( 1 + (12.96 * 9.00 / 132.25))^0.5 = 46.68 kips

Angle2 Girder Weld:
Rotational Ductility Check not required as the Leg thickness not greater than 5/8
Dmax1 using min(eqn 9-2, tang - 0.06) 
 = min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06) 
 = min(0.31 * 65.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06) 
 = min(6.58, 4.01)
 = 4.01 
Dmax2 (using eqn 9-2)
 = tfsupport * Fusupport / ( Fexx * C1 * 0.04 )
 = 0.76 * 65.00 / ( 70.00 * 1.00 * 0.04 ) 
 = 15.97 
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 15.97, 12.00)
 = 4.01 

Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16
(phi) * Rn = 1.39 * 4.00 * 11.50 /  ( 1 + (12.96 * 9.00 / 132.25))^0.5 = 46.68 kips


Total Weld Strength = min ( Angle1 Weld Strength/Gage Ratio at Angle1 , Angle2 Weld Strength/Gage Ratio at Angle2 ) = min (93.36 , 93.36) = 93.36 kips