Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bcw.s.s.01845.01845
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W12X14
Column profile: W14X176
Slope: 0 deg.
Skew: 90
Vertical Offset: 0
Horizontal Offset: 0
Span: 10 ft.
Reaction, V: 20 kips
Shear Capacity, Rn: 20.3 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Stabilizer plate grade: A572-GR.50
Shear Plate Size: 17.500 in. x 7.500 in. x 0.750 in.
Shear Plate Detailing Height at Support: 7.500 in.
Shear Plate Detailing Width at Support: 7.375 in.
Stabilizer plate size: 12.500 in. x 7.375 in. x 0.625 in.
(Required due to user requirement)
Configuration Geometry:
Welds at shear plate to support: 8/16 FILLET, 8/16 FILLET
Welds at stabilizer plate :
at column flange: 5/16 FILLET, 5/16 FILLET
at column web: 4/16 FILLET, 4/16 FILLET
at shear plate: 4/16 FILLET, 4/16 FILLET
Bolt: 2 rows x 3 columns 0.875 in. Diameter A325N_TC bolts
Vertical spacing: 5 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 8 in.
Beam centerline setback = 8 in.
Edge distance at vertical edge of plate: 1.75 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.75 in.
Horizontal distance to first hole: 9.75 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.938 in.
Holes in shear plate: SSL diameter = 0.938 in., slot width = 1.12 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND SHEAR PLATE SIDE:
Bolt Shear Capacity at Shear Load Only:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 12.750 in.
Angle = 0.000 deg.
C = 1.463
Using Table 7-1 to determine (1/omega)rn:
(1/omega)Rn = (1/omega)rn * C = 16.24 * 1.46 = 23.75 kips


Total Vertical Bolt Shear Capacity = 23.75 kips
23.75 kips >= 20.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.27, 0.00)
At Row 1, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <8.06, 13.75>
Lcsbm at Beam spacing  = 4.57 in.
Lcebm at Beam edge    = 3.01 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.57 * (0.20/1) * 65.00 = 35.65 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.01 * (0.20/1) * 65.00 = 23.46 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(35.65, 23.46, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-8.06, -13.75>
Lcsshpl at Shear Plate spacing  = 4.53 in.
Lceshpl at Shear Plate edge    = 6.70 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.53 * 0.75 * 65.00 = 132.45 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.70 * 0.75 * 65.00 = 195.98 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(132.45, 195.98, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.94 = 0.86

At Row 1, At Column 2:
Ribolt = 14.89 kips
Ri vector at Beam   = <13.28, 6.73>
Lcsbm at Beam spacing  = 4.57 in.
Lcebm at Beam edge    = 6.17 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.57 * (0.20/1) * 65.00 = 35.65 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 6.17 * (0.20/1) * 65.00 = 48.11 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(35.65, 48.11, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-13.28, -6.73>
Lcsshpl at Shear Plate spacing  = 4.53 in.
Lceshpl at Shear Plate edge    = 13.19 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.53 * 0.75 * 65.00 = 132.45 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 13.19 * 0.75 * 65.00 = 385.95 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(132.45, 385.95, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 14.89 = 0.92

At Row 1, At Column 3:
Ribolt = 15.10 kips
Ri vector at Beam   = <12.41, -8.60>
Lcsbm at Beam spacing  = 4.57 in.
Lcebm at Beam edge    = 15.15 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.57 * (0.20/1) * 65.00 = 35.65 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 15.15 * (0.20/1) * 65.00 = 118.18 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(35.65, 118.18, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <-12.41, 8.60>
Lcsshpl at Shear Plate spacing  = 4.53 in.
Lceshpl at Shear Plate edge    = 1.51 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.53 * 0.75 * 65.00 = 132.45 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.51 * 0.75 * 65.00 = 44.15 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(132.45, 44.15, 51.19) = 44.15 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 44.151) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.10 = 0.90

At Row 2, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <-8.06, 13.75>
Lcsbm at Beam spacing  = 4.57 in.
Lcebm at Beam edge    = 2.99 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.57 * (0.20/1) * 65.00 = 35.65 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.99 * (0.20/1) * 65.00 = 23.34 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(35.65, 23.34, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <8.06, -13.75>
Lcsshpl at Shear Plate spacing  = 4.53 in.
Lceshpl at Shear Plate edge    = 0.91 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.53 * 0.75 * 65.00 = 132.45 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.91 * 0.75 * 65.00 = 26.49 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(132.45, 26.49, 51.19) = 26.49 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 26.486) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.94 = 0.86

At Row 2, At Column 2:
Ribolt = 14.89 kips
Ri vector at Beam   = <-13.28, 6.73>
Lcsbm at Beam spacing  = 4.57 in.
Lcebm at Beam edge    = 4.86 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.57 * (0.20/1) * 65.00 = 35.65 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.86 * (0.20/1) * 65.00 = 37.88 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(35.65, 37.88, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <13.28, -6.73>
Lcsshpl at Shear Plate spacing  = 4.53 in.
Lceshpl at Shear Plate edge    = 2.13 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.53 * 0.75 * 65.00 = 132.45 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.13 * 0.75 * 65.00 = 62.45 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(132.45, 62.45, 51.19) = 51.19 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 51.188) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 14.89 = 0.92

At Row 2, At Column 3:
Ribolt = 15.10 kips
Ri vector at Beam   = <-12.41, -8.60>
Lcsbm at Beam spacing  = 4.57 in.
Lcebm at Beam edge    = 6.38 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.57 * (0.20/1) * 65.00 = 35.65 kips/bolt
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 6.38 * (0.20/1) * 65.00 = 49.74 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.20/1) * 65.00 = 13.65 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(35.65, 49.74, 13.65) = 13.65 kips/bolt
Ri vector at Shear Plate   = <12.41, 8.60>
Lcsshpl at Shear Plate spacing  = 4.53 in.
Lceshpl at Shear Plate edge    = 1.44 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 4.53 * 0.75 * 65.00 = 132.45 kips/bolt
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.44 * 0.75 * 65.00 = 42.26 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.75 * 65.00 = 51.19 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(132.45, 42.26, 51.19) = 42.26 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(13.650, 42.263) = 13.65 kips/bolt
Bolt Shear Demand to Bearing ratio = 13.65 / 15.10 = 0.90

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
 = min(1.00, 0.86, 0.92, 0.90, 0.86, 0.92, 0.90) = 0.86

BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 0.86 * 23.75 = 20.35 kips
Rbv = 20.35 kips >= V = 20.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 11.9 - 0 - 0 = 11.9 in.
Gross Area (Shear) = [Web Depth] * tw = 11.90 * 0.20 = 2.38 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (11.90 - (2 * 1.00)) * 0.20 = 1.98 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.38 = 47.60 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.98 = 38.61 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Shear Plate Calcs:
Gross Area = 0.75 * 7.50 = 5.62 in^2
Net Area = (7.50 - (2 *(0.94 + 1/16))) * 0.75 = 4.12 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 50.00 * 5.62 = 112.50 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 65.00 * 4.12 = 80.44 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (7.5 - 1.25) = 6.25 in.
Net Shear Length = 6.25 - (1.5 * (0.938 + 0.0625)) = 4.75 in.
Gross Tension Length = (6 + 1.75) = 7.75 in.
Net Tension Length = 7.75 - (2.5 * (1.12 + 0.0625)) = 4.78 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 65.00 * 4.75) + (0.50 * 65.00 * 4.78)) = 127.74 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 50.00 * 6.25) + (0.50 * 65.00 * 4.78)) = 128.58 kips
Block Shear = 127.74 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (7.5 - 1.25) = 12.50 in.
Net Shear Length = 2 * ( 6.25 - (1.5 * (0.938 + 0.0625)) ) = 9.50 in.
Gross Tension Length = (6 + 1.75) - 1.75 = 6.00 in.
Net Tension Length = 6 - 2 * (1.12 + 0.0625) = 3.62 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 65.00 * 9.50) + (0.50 * 65.00 * 3.62)) = 183.12 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.75 * ((0.60 * 50.00 * 12.50) + (0.50 * 65.00 * 3.62)) = 184.80 kips
Block Shear = 183.12 kips

127.74 kips >= Vbm = 20.00 kips (OK)

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.75 in.
Zgross = 10.55 in^3
Znet   = 6.80 in^3
Sgross = 7.03 in^3
Snet   = 4.53 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 6.80 / 9.75 = 22.66 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.75 in.
ho = 7.50 in.
c = 9.75 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 7.50 * 50.00^0.5 / (10 * 0.75 * (475.00 + 280.00 * (7.50/9.75)^2 )^0.5) = 0.28
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 30.00 * 7.03 / 9.75 = 21.63 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 12.75 in.
Zgross = 10.55
Znet = 6.80
Mr = Vr * e = 20.00 * 12.75 = 255.00 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 50.00 * 10.55 = 316.41 kips-in
Vr = 20.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 50.00 * 5.62 = 112.50 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (20.00 / 112.50)^2 + (255.00 / 316.41)^2 = 0.68 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
tmax = 6 * Mmax / (Fypl * d^2) Eq. 10-3
Mmax = (1/0.9) * Fv * Ab * C' Eq. 10-4
Mmax = (1/0.9) * 54 * 0.60132 * 20.0112 = 721.99 kips-in
tmax = 6 * 721.99 / (50 * 7.5^2) = 1.54 in.
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 7.50 * 0.75^3 / 9.75^2 = 94.11 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 20.00 * ((0.19 + 0.75) / 2) = 9.38 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 =  ((0.67 * 0.6 * 50.00) - (20.00 / (7.50 * 0.75))) * 0.5 * 7.50 * 0.75^2 = 34.69 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 6.000 in.
Shear Load per inch per weld, fv = R/Lv/2 = 20.000 / 6.000 / 2 = 1.667 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 1.667 / (0.500 * 1.856) = 1.796/16

Minimum fillet weld size : 
   At shear only load case = 0.11 in.
   per Table J2.4     = 0.25 in.
   5/8tp              = 0.47 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 0.750 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 7.879 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 0.830 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 8.720 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(7.879, 8.720, 12.000)
 = 7.879 

Use weld size
D1 = 8.00
D2 = 8.00

Weld Strength :

Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 6.00 * (7.88 + 7.88) = 87.75 kips

87.75 kips >= Vbm = 20.00 kips (OK)