Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
B+Op Status: B+Op was disabled for some sessions of this job
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report    |  B+Op Connection Comparison Report  |  Standard Connection Cost Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed    |  No Connections Reference Map
 
Shear and Axial Reports:Shear Plate: Specs  Strengths (Shear Only Connections)  Welds  Doublers  Connection Cost Report
    Strengths (Shear & Axial Connections)      
 Single Angle:  Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
 Double Angle Reports:  Support Side Specs  Strengths (Shear & Axial)  Welds  Doublers  Connection Cost Report
    Beam Side Specs        
 End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds  Connection Cost Report
 
Moment Reports: Specs  Support Strengths  Beam Flange Welds  Connection Cost Report
 Moment Plates:  Specs  Strengths  Welds  
 Column Stiffeners:  Specs  Strengths  Welds  
 Column Web Doublers:  Specs  Strengths  Welds  
 Shear Plate:  Specs  Strengths  Welds  
 Double Angle:  Support Side Specs  Strengths  Welds  
   Beam Side Specs      
 

Connection Number:
bcw.s.s.01953.01953
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W21X50
Column profile: W14X132
Slope: 0 deg.
Skew: 90
Vertical Offset: 0
Horizontal Offset: 0
Span: 19.9 ft.
Reaction, V: 30 kips
Shear Capacity, Rn: 40.6 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A572-GR.50
Weld grade: E70
Stabilizer plate grade: A572-GR.50
Shear Plate Size: 11.125 in. x 17.500 in. x 0.375 in.
Shear Plate Detailing Height at Support: 18.625 in.
Shear Plate Detailing Width at Support: 7.062 in.
Stabilizer plate size: 12.500 in. x 7.062 in. x 0.625 in.
(Required due to user requirement)
Configuration Geometry:
Welds at shear plate to support: 4/16 FILLET, 4/16 FILLET
Welds at stabilizer plate :
at column flange: 5/16 FILLET, 5/16 FILLET
at column web: 4/16 FILLET, 4/16 FILLET
at shear plate: 4/16 FILLET, 4/16 FILLET
Bolt: 6 rows x 1 column 0.875 in. Diameter A325N_TC bolts
Vertical spacing: 3 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 7.62 in.
Beam centerline setback = 7.62 in.
Edge distance at vertical edge of plate: 1.75 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.75 in.
Horizontal distance to first hole: 9.38 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.938 in.
Holes in shear plate: SSL diameter = 0.938 in., slot width = 1.12 in.
Bolt Strength Calcs:
BOLT SHEAR CAPACITY AT BEAM AND SHEAR PLATE SIDE:
Bolt Shear Capacity at Shear Load Only:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 9.375 in.
Angle = 0.000 deg.
C = 2.498
Using Table 7-1 to determine (1/omega)rn:
(1/omega)Rn = (1/omega)rn * C = 16.24 * 2.50 = 40.56 kips


Total Vertical Bolt Shear Capacity = 40.56 kips
40.56 kips >= 30.00 kips (OK)
Bolt Bearing Calcs:
BOLT BEARING AT BEAM AND SHEAR PLATE SIDE
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.95, 0.00)
At Row 1, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <15.42, 4.01>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 11.46 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 11.46 * (0.38/1) * 65.00 = 169.77 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 169.77, 25.94) = 25.94 kips/bolt
Ri vector at Shear Plate   = <-15.42, -4.01>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 9.11 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.11 * 0.38 * 65.00 = 133.17 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 133.17, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(25.935, 25.594) = 25.59 kips/bolt
Bolt Shear Demand to Bearing ratio = 25.59 / 15.94 = 1.61

At Row 2, At Column 1:
Ribolt = 15.17 kips
Ri vector at Beam   = <13.92, 6.03>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 14.62 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 14.62 * (0.38/1) * 65.00 = 216.72 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 216.72, 25.94) = 25.94 kips/bolt
Ri vector at Shear Plate   = <-13.92, -6.03>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 9.60 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.60 * 0.38 * 65.00 = 140.46 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 140.46, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(25.935, 25.594) = 25.59 kips/bolt
Bolt Shear Demand to Bearing ratio = 25.59 / 15.17 = 1.69

At Row 3, At Column 1:
Ribolt = 12.92 kips
Ri vector at Beam   = <7.88, 10.24>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 10.89 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 10.89 * (0.38/1) * 65.00 = 161.34 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 161.34, 25.94) = 25.94 kips/bolt
Ri vector at Shear Plate   = <-7.88, -10.24>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 12.34 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.34 * 0.38 * 65.00 = 180.48 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 180.48, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(25.935, 25.594) = 25.59 kips/bolt
Bolt Shear Demand to Bearing ratio = 25.59 / 12.92 = 1.98

At Row 4, At Column 1:
Ribolt = 12.92 kips
Ri vector at Beam   = <-7.88, 10.24>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 2.40 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.40 * (0.38/1) * 65.00 = 35.58 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 35.58, 25.94) = 25.94 kips/bolt
Ri vector at Shear Plate   = <7.88, -10.24>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 2.28 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.28 * 0.38 * 65.00 = 33.32 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 33.32, 25.59) = 25.59 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(25.935, 25.594) = 25.59 kips/bolt
Bolt Shear Demand to Bearing ratio = 25.59 / 12.92 = 1.98

At Row 5, At Column 1:
Ribolt = 15.17 kips
Ri vector at Beam   = <-13.92, 6.03>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 1.44 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.44 * (0.38/1) * 65.00 = 21.32 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 21.32, 25.94) = 21.32 kips/bolt
Ri vector at Shear Plate   = <13.92, -6.03>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 1.29 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.29 * 0.38 * 65.00 = 18.93 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 18.93, 25.59) = 18.93 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(21.318, 18.927) = 18.93 kips/bolt
Bolt Shear Demand to Bearing ratio = 18.93 / 15.17 = 1.25

At Row 6, At Column 1:
Ribolt = 15.94 kips
Ri vector at Beam   = <-15.42, 4.01>
Lcsbm at Beam spacing  = na
Lcebm at Beam edge    = 1.34 in.
(1/omega)Rnsbm at Beam spacing = (1/omega) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.38/1) * 65.00 = na
(1/omega)Rnebm at Beam edge = (1/omega) * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.34 * (0.38/1) * 65.00 = 19.85 kips/bolt
(1/omega)Rndbm on Beam at Bolt Diameter   = (1/omega) * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.88 * (0.38/1) * 65.00 = 25.94 kips/bolt
Beam bearing capacity, (1/omega)Rnbm = min((1/omega)Rnsbm,(1/omega)Rnebm,(1/omega)Rndbm) = min(na, 19.85, 25.94) = 19.85 kips/bolt
Ri vector at Shear Plate   = <15.42, -4.01>
Lcsshpl at Shear Plate spacing  = na
Lceshpl at Shear Plate edge    = 1.23 in.
(1/omega)Rnsshpl at Shear Plate spacing = (1/omega) * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 65.00 = na
(1/omega)Rneshpl at Shear Plate edge = (1/omega) * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.23 * 0.38 * 65.00 = 17.94 kips/bolt
(1/omega)Rndshpl on Shear Plate at Bolt Diameter   = (1/omega) * hf2 * db * t * Fu = 0.50 * 2.40 * 0.88 * 0.38 * 65.00 = 25.59 kips/bolt
Shear Plate bearing capacity, (1/omega)Rnshpl = min((1/omega)Rnsshpl,(1/omega)Rneshpl,(1/omega)Rndshpl) = min(na, 17.94, 25.59) = 17.94 kips/bolt
(1/omega)Rn = min((1/omega)Rnbm, (1/omega)Rnshpl) = min(19.850, 17.944) = 17.94 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.94 / 15.94 = 1.13

Min Bolt Shear Demand to Bearing ratio Beam and Shear Plate for vertical shear only
 = min(1.00, 1.61, 1.69, 1.98, 1.98, 1.25, 1.13) = 1.00

BEARING AT BEAM AND SHEAR PLATE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 40.56 = 40.56 kips
Rbv = 40.56 kips >= V = 30.00 kips (OK)
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 20.8 - 0 - 0 = 20.8 in.
Gross Area (Shear) = [Web Depth] * tw = 20.80 * 0.38 = 7.90 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (20.80 - (6 * 1.00)) * 0.38 = 5.62 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 7.90 = 158.08 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 5.62 = 109.67 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Shear Plate Calcs:
Gross Area = 0.38 * 17.50 = 6.56 in^2
Net Area = (17.50 - (6 *(0.94 + 1/16))) * 0.38 = 4.31 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 50.00 * 6.56 = 131.25 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 65.00 * 4.31 = 84.09 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (17.5 - 1.25) = 16.25 in.
Net Shear Length = 16.2 - (5.5 * (0.938 + 0.0625)) = 10.75 in.
Gross Tension Length = (0 + 1.75) = 1.75 in.
Net Tension Length = 1.75 - (0.5 * (1.12 + 0.0625)) = 1.16 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.38 * ((0.60 * 65.00 * 10.75) + (1.00 * 65.00 * 1.16)) = 92.70 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.38 * ((0.60 * 50.00 * 16.25) + (1.00 * 65.00 * 1.16)) = 105.50 kips
Block Shear = 92.70 kips

92.70 kips >= Reaction V = 30.00 kips (OK)

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.38 in.
Zgross = 28.71 in^3
Znet   = 18.59 in^3
Sgross = 19.14 in^3
Snet   = 12.39 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 18.59 / 9.38 = 64.43 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.38 in.
ho = 17.50 in.
c = 9.38 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 17.50 * 50.00^0.5 / (10 * 0.38 * (475.00 + 280.00 * (17.50/9.38)^2 )^0.5) = 0.87
When 0.70 < lambda <= 1.41, Q=1.34 - 0.49 * lambda
Q = 0.92
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 0.92 = 27.57 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 27.57 * 19.14 / 9.38 = 56.28 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 9.38 in.
Zgross = 28.71
Znet = 18.59
Mr = Vr * e = 30.00 * 9.38 = 281.25 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 50.00 * 28.71 = 861.33 kips-in
Vr = 30.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 50.00 * 6.56 = 131.25 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (30.00 / 131.25)^2 + (281.25 / 861.33)^2 = 0.16 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
No of bolt columns = 1
tp  < = db/2 + 1/16 = 0.375 <= 0.5 OK
tw  < = db/2 + 1/16 = 0.38 <= 0.5 OK
Leh(plate) >= 2 * db = 1.75 >= 1.75 OK
Leh(bm) >= 2 * db = 1.75 >= 1.75 OK
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 17.50 * 0.38^3 / 9.38^2 = 29.69 kips
Stabilizer Plate Required for lateral displacement

Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 30.00 * ((0.38 + 0.38) / 2) = 11.25 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 =  ((0.67 * 0.6 * 50.00) - (30.00 / (17.50 * 0.38))) * 0.5 * 17.50 * 0.38^2 = 18.98 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 17.125 in.
Shear Load per inch per weld, fv = R/Lv/2 = 30.000 / 17.125 / 2 = 0.876 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 0.876 / (0.500 * 1.856) = 0.944/16

Minimum fillet weld size : 
   At shear only load case = 0.06 in.
   per Table J2.4     = 0.19 in.
   5/8tp              = 0.23 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 0.375 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 3.940 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 0.645 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 6.776 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.940, 6.776, 12.000)
 = 3.940 

Use weld size
D1 = 4.00
D2 = 4.00

Weld Strength :

Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 17.12 * (3.94 + 3.94) = 125.23 kips

125.23 kips >= Vbm = 30.00 kips (OK)