BOLT BEARING AT BEAM AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.69 in.
Lcebm at Beam edge = 1.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.69 * (0.23/2) * 65.00 = 18.47 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.59 * (0.23/2) * 65.00 = 10.96 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.23/2) * 65.00 = 10.31 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(18.47, 10.96, 10.31) = 10.31 kips/bolt
Lcsang1 at Angle 1 spacing = 2.69 in.
Lceang1 at Angle 1 edge = 4.09 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.69 * 0.38 * 65.00 = 58.96 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 4.09 * 0.38 * 65.00 = 89.81 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(58.96, 89.81, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 10.31, 32.91) = 10.31 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.69 in.
Lcebm at Beam edge = 5.09 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.69 * (0.23/2) * 65.00 = 18.47 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.09 * (0.23/2) * 65.00 = 35.01 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.23/2) * 65.00 = 10.31 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(18.47, 35.01, 10.31) = 10.31 kips/bolt
Lcsang1 at Angle 1 spacing = 2.69 in.
Lceang1 at Angle 1 edge = 0.59 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.69 * 0.38 * 65.00 = 58.96 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.59 * 0.38 * 65.00 = 13.03 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(58.96, 13.03, 32.91) = 13.03 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang1) = min(17.89, 10.31, 13.03) = 10.31 kips/bolt
Bearing Capacity at Beam and Angle for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 10.31 + 10.31 = 20.62 kips
BOLT BEARING AT BEAM AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.69 in.
Lcebm at Beam edge = 1.59 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.69 * (0.23/2) * 65.00 = 18.47 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 1.59 * (0.23/2) * 65.00 = 10.96 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.23/2) * 65.00 = 10.31 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(18.47, 10.96, 10.31) = 10.31 kips/bolt
Lcsang2 at Angle 2 spacing = 2.69 in.
Lceang2 at Angle 2 edge = 4.09 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.69 * 0.38 * 65.00 = 58.96 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 4.09 * 0.38 * 65.00 = 89.81 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(58.96, 89.81, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 10.31, 32.91) = 10.31 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcsbm at Beam spacing = 2.69 in.
Lcebm at Beam edge = 5.09 in.
(phi)Rnsbm at Beam spacing = (phi) * hf1 * Lcs * (tw/# shear planes) * Fu = 0.75 * 1.20 * 2.69 * (0.23/2) * 65.00 = 18.47 kips/bolt
(phi)Rnebm at Beam edge = (phi) * hf1 * Lce * (tw/# shear planes) * Fu = 0.75 * 1.20 * 5.09 * (0.23/2) * 65.00 = 35.01 kips/bolt
(phi)Rndbm on Beam at Bolt Diameter = (phi) * hf2 * db * (tw/# shear planes) * Fu = 0.75 * 2.40 * 0.75 * (0.23/2) * 65.00 = 10.31 kips/bolt
Beam bearing capacity, (phi)Rnbm = min((phi)Rnsbm,(phi)Rnebm,(phi)Rndbm) = min(18.47, 35.01, 10.31) = 10.31 kips/bolt
Lcsang2 at Angle 2 spacing = 2.69 in.
Lceang2 at Angle 2 edge = 0.59 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.69 * 0.38 * 65.00 = 58.96 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.59 * 0.38 * 65.00 = 13.03 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(58.96, 13.03, 32.91) = 13.03 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnbm, (phi)Rnang2) = min(17.89, 10.31, 13.03) = 10.31 kips/bolt
Bearing Capacity at Beam and Angle for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 10.31 + 10.31 = 20.62 kips
BEARING AT BEAM AND ANGLE SIDE SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv
= Min(Sum{ Bearing at side 1 [(Row)i,(Column)i] } / gage1 ratio,
Sum{ Bearing at side 2 [(Row)i,(Column)i] } / gage2 ratio )
= Min( 20.62/ 0.50, 20.62/ 0.50 ) = 41.24 kips
Rbv = 41.24 kips >= Reaction V = 17.00 kips (OK)
BOLT BEARING AT SUPPORT AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 2.69 in.
Lcesupp at Support edge = 14.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.69 * (0.32/1) * 65.00 = 49.53 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.49 * (0.32/1) * 65.00 = 267.09 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(49.53, 267.09, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing = 2.69 in.
Lceang1 at Angle 1 edge = 0.59 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.69 * 0.38 * 65.00 = 58.96 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.59 * 0.38 * 65.00 = 13.03 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(58.96, 13.03, 32.91) = 13.03 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 13.03) = 13.03 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 2.69 in.
Lcesupp at Support edge = 10.99 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.69 * (0.32/1) * 65.00 = 49.53 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 10.99 * (0.32/1) * 65.00 = 202.59 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(49.53, 202.59, 27.64) = 27.64 kips/bolt
Lcsang1 at Angle 1 spacing = 2.69 in.
Lceang1 at Angle 1 edge = 4.09 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.69 * 0.38 * 65.00 = 58.96 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 4.09 * 0.38 * 65.00 = 89.81 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(58.96, 89.81, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(17.89, 27.64, 32.91) = 17.89 kips/bolt
Bearing Capacity at Support and Angle 1 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 13.03 + 17.89 = 30.92 kips
BOLT BEARING AT SUPPORT AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 2.69 in.
Lcesupp at Support edge = 14.49 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.69 * (0.32/1) * 65.00 = 49.53 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.49 * (0.32/1) * 65.00 = 267.09 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(49.53, 267.09, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing = 2.69 in.
Lceang2 at Angle 2 edge = 0.59 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.69 * 0.38 * 65.00 = 58.96 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.59 * 0.38 * 65.00 = 13.03 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(58.96, 13.03, 32.91) = 13.03 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 13.03) = 13.03 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 17.89 kips
Lcssupp at Support spacing = 2.69 in.
Lcesupp at Support edge = 10.99 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.69 * (0.32/1) * 65.00 = 49.53 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 10.99 * (0.32/1) * 65.00 = 202.59 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 0.75 * (0.32/1) * 65.00 = 27.64 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(49.53, 202.59, 27.64) = 27.64 kips/bolt
Lcsang2 at Angle 2 spacing = 2.69 in.
Lceang2 at Angle 2 edge = 4.09 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 2.69 * 0.38 * 65.00 = 58.96 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 4.09 * 0.38 * 65.00 = 89.81 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 0.75 * 0.38 * 65.00 = 32.91 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(58.96, 89.81, 32.91) = 32.91 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(17.89, 27.64, 32.91) = 17.89 kips/bolt
Bearing Capacity at Support and Angle 2 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 13.03 + 17.89 = 30.92 kips
BEARING AT SUPPORT AND ANGLES SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv1 = Sum{ [(Row)i,(Column)i] } / gage1 ratio = 30.92 / 0.50 = 61.84 kips
Bearing Capacity at Vertical Shear Load Only, Rbv2 = Sum{ [(Row)i,(Column)i] } / gage2 ratio = 30.92 / 0.50 = 61.84 kips
Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(61.84, 61.84) = 61.84 kips
61.84 kips >= 17.00 kips (OK) |
Angle1
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 5.50 = 2.06 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 2.06 = 61.88 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (5.50 - (2 * (0.81 + 1/16))) * 0.38 = 1.41 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 1.41 = 41.13 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (5.50 - 1.00) = 4.50 in.
Net Shear Length = 4.50 - (1.50 * (0.81 + 1/16)) = 3.19 in.
Gross Tension Length = [edge dist.] = 1.37 in.
Net Tension Length = (1.37 - (1.00 + 1/16)/2) = 0.84 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 65.00 * 3.19) + (1.00 * 65.00 * 0.84)) = 50.25 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 50.00 * 4.50) + (1.00 * 65.00 * 0.84)) = 53.26 kips
Block Shear = 50.25 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 5.50 = 2.06 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 2.06 = 61.88 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (5.50 - (2 * (0.81 + 1/16))) * 0.38 = 1.41 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 1.41 = 41.13 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (5.50 - 1.00) = 4.50 in.
Net Shear Length = 4.50 - (1.50 * (0.81 + 1/16) = 3.19 in.
Gross Tension Length = [edge dist.] = 1.50 in.
Net Tension Length = (1.50 - (0.81 + 1/16)/2) = 1.06 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 65.00 * 3.19) + (1.00 * 65.00 * 1.06)) = 54.39 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 50.00 * 4.50) + (1.00 * 65.00 * 1.06)) = 57.39 kips
Block Shear = 54.39 kips
Block Shear for Axial T/C is not required.
Angle2
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 5.50 = 2.06 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 2.06 = 61.88 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (5.50 - (2 * (0.81 + 1/16))) * 0.38 = 1.41 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 1.41 = 41.13 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (5.50 - 1.00) = 4.50 in.
Net Shear Length = 4.50 - (1.50 * (0.81 + 1/16)) = 3.19 in.
Gross Tension Length = [edge dist.] = 1.37 in.
Net Tension Length = (1.37 - (1.00 + 1/16)/2) = 0.84 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 65.00 * 3.19) + (1.00 * 65.00 * 0.84)) = 50.25 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 50.00 * 4.50) + (1.00 * 65.00 * 0.84)) = 53.26 kips
Block Shear = 50.25 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.38 * 5.50 = 2.06 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 50.00 * 2.06 = 61.88 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (5.50 - (2 * (0.81 + 1/16))) * 0.38 = 1.41 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 65.00 * 1.41 = 41.13 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (5.50 - 1.00) = 4.50 in.
Net Shear Length = 4.50 - (1.50 * (0.81 + 1/16) = 3.19 in.
Gross Tension Length = [edge dist.] = 1.50 in.
Net Tension Length = (1.50 - (0.81 + 1/16)/2) = 1.06 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 65.00 * 3.19) + (1.00 * 65.00 * 1.06)) = 54.39 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.38 * ((0.60 * 50.00 * 4.50) + (1.00 * 65.00 * 1.06)) = 57.39 kips
Block Shear = 54.39 kips
Block Shear for Axial T/C is not required.
Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(123.75 , 123.75) = 123.75 kips
123.75 kips >= Reaction V = 17.00 kips (OK)
Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(82.27 , 82.27) = 82.27 kips
82.27 kips >= Reaction V = 17.00 kips (OK)
Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(100.50 , 100.50) = 100.50 kips
100.50 kips >= Reaction V = 17.00 kips (OK)
Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(123.75 , 123.75) = 123.75 kips
123.75 kips >= Reaction V = 17.00 kips (OK)
Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(82.27 , 82.27) = 82.27 kips
82.27 kips >= Reaction V = 17.00 kips (OK)
Total Beam Side Vertical Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(108.78 , 108.78) = 108.78 kips
108.78 kips >= Reaction V = 17.00 kips (OK) |