BOLT BEARING AT SUPPORT AND ANGLE 1 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 14.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.37 * (0.32/1) * 65.00 = 264.79 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 264.79, 36.86) = 35.70 kips/bolt
Lcsang1 at Angle 1 spacing = 1.94 in.
Lceang1 at Angle 1 edge = 0.72 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.72 * 0.31 * 58.00 = 11.74 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(31.66, 11.74, 32.68) = 11.74 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(40.06, 35.70, 11.74) = 11.74 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 11.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 11.37 * (0.32/1) * 65.00 = 209.50 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 209.50, 36.86) = 35.70 kips/bolt
Lcsang1 at Angle 1 spacing = 1.94 in.
Lceang1 at Angle 1 edge = 3.72 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.72 * 0.31 * 58.00 = 60.76 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(31.66, 60.76, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 8.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 8.37 * (0.32/1) * 65.00 = 154.22 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 154.22, 36.86) = 35.70 kips/bolt
Lcsang1 at Angle 1 spacing = 1.94 in.
Lceang1 at Angle 1 edge = 6.72 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.72 * 0.31 * 58.00 = 109.78 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(31.66, 109.78, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 5.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.37 * (0.32/1) * 65.00 = 98.94 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 98.94, 36.86) = 35.70 kips/bolt
Lcsang1 at Angle 1 spacing = 1.94 in.
Lceang1 at Angle 1 edge = 9.72 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.72 * 0.31 * 58.00 = 158.79 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(31.66, 158.79, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
At Row 5, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 2.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.37 * (0.32/1) * 65.00 = 43.65 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 43.65, 36.86) = 35.70 kips/bolt
Lcsang1 at Angle 1 spacing = 1.94 in.
Lceang1 at Angle 1 edge = 12.72 in.
(phi)Rnsang1 at Angle 1 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang1 at Angle 1 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 12.72 * 0.31 * 58.00 = 207.81 kips/bolt
(phi)Rndang1 on Angle 1 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 1 bearing capacity, (phi)Rnang1 = min((phi)Rnsang1,(phi)Rneang1,(phi)Rndang1) = min(31.66, 207.81, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang1) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
Bearing Capacity at Support and Angle 1 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 11.74 + 31.66 + 31.66 + 31.66 + 31.66 = 138.37 kips
BOLT BEARING AT SUPPORT AND ANGLE 2 SIDE
Vertical Shear Only Load Case:
At Row 1, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 14.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 14.37 * (0.32/1) * 65.00 = 264.79 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 264.79, 36.86) = 35.70 kips/bolt
Lcsang2 at Angle 2 spacing = 1.94 in.
Lceang2 at Angle 2 edge = 0.72 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 0.72 * 0.31 * 58.00 = 11.74 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(31.66, 11.74, 32.68) = 11.74 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(40.06, 35.70, 11.74) = 11.74 kips/bolt
At Row 2, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 11.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 11.37 * (0.32/1) * 65.00 = 209.50 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 209.50, 36.86) = 35.70 kips/bolt
Lcsang2 at Angle 2 spacing = 1.94 in.
Lceang2 at Angle 2 edge = 3.72 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 3.72 * 0.31 * 58.00 = 60.76 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(31.66, 60.76, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
At Row 3, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 8.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 8.37 * (0.32/1) * 65.00 = 154.22 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 154.22, 36.86) = 35.70 kips/bolt
Lcsang2 at Angle 2 spacing = 1.94 in.
Lceang2 at Angle 2 edge = 6.72 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 6.72 * 0.31 * 58.00 = 109.78 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(31.66, 109.78, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
At Row 4, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 5.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 5.37 * (0.32/1) * 65.00 = 98.94 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 98.94, 36.86) = 35.70 kips/bolt
Lcsang2 at Angle 2 spacing = 1.94 in.
Lceang2 at Angle 2 edge = 9.72 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 9.72 * 0.31 * 58.00 = 158.79 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(31.66, 158.79, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
At Row 5, At Column 1:
(phi)Rnbolt = 40.06 kips
Lcssupp at Support spacing = 1.94 in.
Lcesupp at Support edge = 2.37 in.
(phi)Rnssupp at Support spacing = (phi) * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 1.94 * (0.32/1) * 65.00 = 35.70 kips/bolt
(phi)Rnesupp at Support edge = (phi) * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.75 * 1.20 * 2.37 * (0.32/1) * 65.00 = 43.65 kips/bolt
(phi)Rndsupp on Support at Bolt Diameter = (phi) * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.75 * 2.40 * 1.00 * (0.32/1) * 65.00 = 36.86 kips/bolt
Support bearing capacity, (phi)Rnsupp = min((phi)Rnssupp,(phi)Rnesupp,(phi)Rndsupp) = min(35.70, 43.65, 36.86) = 35.70 kips/bolt
Lcsang2 at Angle 2 spacing = 1.94 in.
Lceang2 at Angle 2 edge = 12.72 in.
(phi)Rnsang2 at Angle 2 spacing = (phi) * hf1 * Lcs * t * Fu = 0.75 * 1.20 * 1.94 * 0.31 * 58.00 = 31.66 kips/bolt
(phi)Rneang2 at Angle 2 edge = (phi) * hf1 * Lce * t * Fu = 0.75 * 1.20 * 12.72 * 0.31 * 58.00 = 207.81 kips/bolt
(phi)Rndang2 on Angle 2 at Bolt Diameter = (phi) * hf2 * db * t * Fu = 0.75 * 2.40 * 1.00 * 0.31 * 58.00 = 32.68 kips/bolt
Angle 2 bearing capacity, (phi)Rnang2 = min((phi)Rnsang2,(phi)Rneang2,(phi)Rndang2) = min(31.66, 207.81, 32.68) = 31.66 kips/bolt
(phi)Rn = min((phi)Rnbolt, (phi)Rnsupp, (phi)Rnang2) = min(40.06, 35.70, 31.66) = 31.66 kips/bolt
Bearing Capacity at Support and Angle 2 for vertical shear only
= Sum{ Bearing At [(Row)i,(Column)i] }
= 11.74 + 31.66 + 31.66 + 31.66 + 31.66 = 138.37 kips
BEARING AT SUPPORT AND ANGLES SUMMARY:
Bearing Capacity at Vertical Shear Load Only, Rbv1 = Sum{ [(Row)i,(Column)i] } / gage1 ratio = 138.37 / 0.50 = 276.74 kips
Bearing Capacity at Vertical Shear Load Only, Rbv2 = Sum{ [(Row)i,(Column)i] } / gage2 ratio = 138.37 / 0.50 = 276.74 kips
Overall vertical Bearing Capacity Rbv = min(Rbv1, Rbv2) = min(276.74, 276.74) = 276.74 kips
276.74 kips >= 36.67 kips (OK) |
Angle1
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 14.50 = 4.54 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 36.00 * 4.54 = 98.03 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (14.50 - (5 * (1.06 + 1/16))) * 0.31 = 2.78 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 58.00 * 2.78 = 72.50 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (14.50 - 1.25) = 13.25 in.
Net Shear Length = 13.25 - (4.50 * (1.06 + 1/16)) = 8.19 in.
Gross Tension Length = [edge dist.] = 1.44 in.
Net Tension Length = (1.44 - (1.31 + 1/16)/2) = 0.75 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 58.00 * 8.19) + (1.00 * 58.00 * 0.75)) = 77.13 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 36.00 * 13.25) + (1.00 * 58.00 * 0.75)) = 77.43 kips
Block Shear = 77.13 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 14.50 = 4.54 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 36.00 * 4.54 = 98.03 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 14.50 = 4.54 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 58.00 * 4.54 = 118.46 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 2.68
Zgross = 16.45 in^3
Znet = 16.45 in^3
Sgross = 10.97 in^3
Snet = 10.97 in^3
Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 36.00 * 10.97 / 2.68 = 132.62 kips
Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 58.00 * 16.45 / 2.68 = 267.10 kips
Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 14.50 in.
c = 2.68 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 14.50 * 36.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (14.50/2.68)^2 )^0.5) = 0.30
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 36.00 * 1.00 = 32.40 ksi
Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 32.40 * 10.97 / 2.68 = 132.62 kips
Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:
Zgx = 16.45 in^3
Znx = 16.45 in^3
Zgy = 0.36 in^3
Zny = 0.36 in^3
Mrx = vertical reaction * ex = 18.34 * 2.68 = 49.13 kips-in
Mry = axial reaction * ey = 0.00 * 0.35 = 0.00 kips-in
Mcx = (phi) * Zgx * Min(Fy, Fcr) = 0.90 * 16.45 * Min(36.00, 36.00) = 533.05 kips-in
Mcy = (phi) * Zgy * Fy = 0.90 * 0.36 * 36.00 = 11.51 kips-in
Shear Stress on Gross Section = 18.34 / 4.54 = 4.04 ksi
Shear Stress on Net Section = 18.34 / 4.54 = 4.04 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 4.54 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 4.54 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 49.13 / 16.45 = 2.99 ksi
Axial Stress on Net Section due to Moment (shear) = 49.13 / 16.45 = 2.99 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.36 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.36 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 2.99 = 2.99 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 2.99 = 2.99 ksi
Shear Yield Stress Capacity (SYSC) = phi * 0.6 * Fy = 1.00 * 0.60 * 36.00 = 21.60 ksi
Tensile Yield Stress Capacity (TYSC) = phi * Fy = 0.90 * 36.00 = 32.40 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (4.04 / 21.60)^2 + (2.99 / 32.40 )^2 = 0.04 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 58.00 = 26.10 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 58.00 = 43.50 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (4.04 / 26.10)^2 + (2.99 / 43.50 )^2 = 0.03 <= 1.0 (OK)
Angle2
Support Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 14.50 = 4.54 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fya * Ag = 1.00 * 0.6 * 36.00 * 4.54 = 98.03 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = (14.50 - (5 * (1.06 + 1/16))) * 0.31 = 2.78 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fua * An = 0.75 * 0.6 * 58.00 * 2.78 = 72.50 kips
Check Vertical Block Shear
Using AISC 14th Ed. Equation J4-5
Block Shear = {(phi) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(phi) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (14.50 - 1.25) = 13.25 in.
Net Shear Length = 13.25 - (4.50 * (1.06 + 1/16)) = 8.19 in.
Gross Tension Length = [edge dist.] = 1.44 in.
Net Tension Length = (1.44 - (1.31 + 1/16)/2) = 0.75 in.
1. (phi) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 58.00 * 8.19) + (1.00 * 58.00 * 0.75)) = 77.13 kips
2. (phi) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.75 * 0.31 * ((0.60 * 36.00 * 13.25) + (1.00 * 58.00 * 0.75)) = 77.43 kips
Block Shear = 77.13 kips
Beam Angle Leg
Using AISC 14th Ed. Equation J4-3
Gross Area, Ag = 0.31 * 14.50 = 4.54 in^2
Shear Yielding, (phi)Vny = (phi) * 0.6 * Fyangle * Ag = 1.00 * 0.6 * 36.00 * 4.54 = 98.03 kips
Using AISC 14th Ed. Equation J4-4
Net Area, An = 0.31 * 14.50 = 4.54 in^2
Shear Rupture, (phi)Vnu = (phi) * 0.6 * Fuangle * An = 0.75 * 0.6 * 58.00 * 4.54 = 118.46 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 2.68
Zgross = 16.45 in^3
Znet = 16.45 in^3
Sgross = 10.97 in^3
Snet = 10.97 in^3
Using AISC 14th Ed. Equation 9-19
Flexural Yielding = (phi) * Fy * Sgross / e = 0.90 * 36.00 * 10.97 / 2.68 = 132.62 kips
Using AISC 14th Ed. Equation 9-4
Flexural Rupture = (phi) * Fu * Znet / e = 0.75 * 58.00 * 16.45 / 2.68 = 267.10 kips
Using AISC 14th Ed. Equation 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 14.50 in.
c = 2.68 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 14.50 * 36.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (14.50/2.68)^2 )^0.5) = 0.30
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =phi * Fcr = 0.90 * 36.00 * 1.00 = 32.40 ksi
Using AISC 14th Ed. Equation 9-6
Buckling = Fcr * Sgross / e = 32.40 * 10.97 / 2.68 = 132.62 kips
Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:
Zgx = 16.45 in^3
Znx = 16.45 in^3
Zgy = 0.36 in^3
Zny = 0.36 in^3
Mrx = vertical reaction * ex = 18.34 * 2.68 = 49.13 kips-in
Mry = axial reaction * ey = 0.00 * 0.35 = 0.00 kips-in
Mcx = (phi) * Zgx * Min(Fy, Fcr) = 0.90 * 16.45 * Min(36.00, 36.00) = 533.05 kips-in
Mcy = (phi) * Zgy * Fy = 0.90 * 0.36 * 36.00 = 11.51 kips-in
Shear Stress on Gross Section = 18.34 / 4.54 = 4.04 ksi
Shear Stress on Net Section = 18.34 / 4.54 = 4.04 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 4.54 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 4.54 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 49.13 / 16.45 = 2.99 ksi
Axial Stress on Net Section due to Moment (shear) = 49.13 / 16.45 = 2.99 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.36 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.36 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 2.99 = 2.99 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 2.99 = 2.99 ksi
Shear Yield Stress Capacity (SYSC) = phi * 0.6 * Fy = 1.00 * 0.60 * 36.00 = 21.60 ksi
Tensile Yield Stress Capacity (TYSC) = phi * Fy = 0.90 * 36.00 = 32.40 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (4.04 / 21.60)^2 + (2.99 / 32.40 )^2 = 0.04 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = phi * 0.6 * Fu = 0.75 * 0.60 * 58.00 = 26.10 ksi
Tensile Rupture Stress Capacity (TRSC) = phi * Fu = 0.75 * 58.00 = 43.50 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (4.04 / 26.10)^2 + (2.99 / 43.50 )^2 = 0.03 <= 1.0 (OK)
Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(196.06 , 196.06) = 196.06 kips
196.06 kips >= Reaction V = 36.67 kips (OK)
Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(145.01 , 145.01) = 145.01 kips
145.01 kips >= Reaction V = 36.67 kips (OK)
Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(154.27 , 154.27) = 154.27 kips
154.27 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(196.06 , 196.06) = 196.06 kips
196.06 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(236.92 , 236.92) = 236.92 kips
236.92 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Flexure Yielding Capacity = min (FlexureYieldAngle1/Gage1 Ratio , FlexureYieldAngle2/Gage2 Ratio) = min(265.25 , 265.25) = 265.25 kips
265.25 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Flexure Rupture Capacity = min (FlexureRuptureAngle1/Gage1 Ratio , FlexureRuptureAngle2/Gage2 Ratio) = min(534.19 , 534.19) = 534.19 kips
534.19 kips >= Reaction V = 36.67 kips (OK)
Total Beam Side Bending Buckling Capacity = min (BendingBucklingAngle1/Gage1 Ratio , BendingBucklingAngle2/Gage2 Ratio) = min(265.25 , 265.25) = 265.25 kips
265.25 kips >= Reaction V = 36.67 kips (OK) |
Angles Welded to Beam:
Angle1 Beam Weld
k = 0.17
ex = 2.68
a = ex / l = 2.68 / 14.50 = 0.18
Loadangle = 0.00 deg
Weld Coefficient using Instantaneous Center of Rotation Method, C = 2.54
Dmax1 using AISC 14th Ed. min(eqn 9-2, tang - 0.06)
= min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06)
= min(0.31 * 58.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06)
= min(5.87, 4.01)
= 4.01
Dmax2 (using AISC 14th Ed. eqn 9-3)
= twbeam * Fubeam / ( Fexx * C1 * 0.09 )
= 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 )
= 3.99
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 3.99, 12.00)
= 3.99
Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16
Weld Strength = phi * weld coefficient * l * D = 0.75 * 2.54 * 14.50 * 3.99 = 110.20 kips
Angle2 Beam Weld
k = 0.17
ex = 2.68
a = ex / l = 2.68 / 14.50 = 0.18
Loadangle = 0.00 deg
Weld Coefficient using Instantaneous Center of Rotation Method, C = 2.54
Dmax1 using AISC 14th Ed. min(eqn 9-2, tang - 0.06)
= min(tang * Fuang / ( Fexx * C1 * 0.04), tang - 0.06)
= min(0.31 * 58.00 / ( 70.00 * 1.00 * 0.04), 0.31 - 0.06)
= min(5.87, 4.01)
= 4.01
Dmax2 (using AISC 14th Ed. eqn 9-3)
= twbeam * Fubeam / ( Fexx * C1 * 0.09 )
= 0.38 * 65.00 / ( 70.00 * 1.00 * 0.09 )
= 3.99
Dmax3 = project max fillet weld = 12.00
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.01, 3.99, 12.00)
= 3.99
Use D = Min(angle thickness - 1/16, Max(Design Req, Table J2.4, User Pref Min)) = Min(4.01, Max(1.00, 3.00, 4.00)) = 4.00/16
Weld Strength = phi * weld coefficient * l * D = 0.75 * 2.54 * 14.50 * 3.99 = 110.20 kips
Total Welds Shear Strength = min( Angle1 Weld Shear/Gage Ratio at Angle1 , Angle2 Weld Shear/Gage Ratio at Angle2 ) = min ( 220.40, 220.40) = 220.40 kips |