Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
Session Title: Baseline
Session Date: 2018-08-31 18:06:55
Model Name: Josh_Demo_2000_Tons.db1
B+Op Status: B+Op was disabled
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report  |  B+Op Comparison Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed  |  No Connections Reference Map
 
Shear Plate Reports: Specs  Strengths (Shear Only Connections)  Strengths (Shear & Axial Connections)  Welds  Doublers
Single Angle Reports:  Specs  Strengths (Shear & Axial)  Welds  Doublers
Double Angle Reports:  Support Side Specs  Beam Side Specs  Strengths (Shear & Axial)  Welds  Doublers
End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds
Moment Reports:  Specs  Support Strengths  Support Reinforcement Strengths  Moment Plate Strengths  Welds
Moment Group Reports:  Doubler Plate Specs  Doubler Plate Welds  Stiffener / Moment Plate Specs  Stiffener / Moment Plate Welds

Connection Number:
bcf.2wb.s.00023.00054
 
Main Calcs:
DOUBLE ANGLES Welded to Beam, Bolted to Support CONNECTION SUMMARY

Column Flange profile: W14X61
Filler Beam profile: W12X14
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: 0.00
Horizontal Offset: 0.00
Span: 16.60 ft.
Reaction, V: 13.00 kips
Shear Capacity, Rn: 46.41 kips
Design/Reference according to AISC 14th Ed. - ASD
Beam material grade: A992
Support material grade: A992
Angle material grade: A36
Angle1 Profile: L4X3X5/16
       Length = 8.000 in.
       Support side bolts: 3 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3 in.
Angle2 Profile: L4X3X5/16
       Length = 8.000 in.
       Support side bolts: 3 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3 in.

Configuration Geometry:
Weld Size at Angle 1 Beam Weld:
4/16 FILLET - 3 sides
Weld Size at Angle 2 Beam Weld:
4/16 FILLET - 3 sides

Beam setback = 0.5 in.


Welded Angle Leg At Beam : 
Angle 1 Leg Edge Distances : 
   Distance from top of Angle to top flange of beam : 2 in.
   Distance from bottom of Angle to bottom flange of beam : 1.9 in.

Angle 2 Leg Edge Distances : 
   Distance from top of Angle to top flange of beam : 2 in.
   Distance from bottom of Angle to bottom flange of beam : 1.9 in.

Bolted Angle Leg At Support : 
Angle 1 Leg Distances : 
   Down distance from top of filler beam flange : 3 in.
   Gage at Bolt : 2.75 in.
   Edge distance at vertical edge : 1.35 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Angle 2 Leg Distances : 
   Down distance from top of filler beam flange : 3 in.
   Gage at Bolt : 2.75 in.
   Edge distance at vertical edge : 1.35 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Holes in Support Column Flange : STD diameter = 0.8125 in.
Holes in Support Angle Leg : SSL slot width = 0.8125 in., slot length = 1 in.
Bolt Strength Calcs:
BOLT STRENGTH SUPPORT SIDE:

Angle 1 Bolt Strength (at Shear Load Only):
Gage ratio:  gage1 ratio = gage2 / (gage1 + gage2) = 2.75 / (2.75 + 2.75) = 0.5
Required tension stress (frt) = gage1 ratio * axial reaction    / bolt row count / bolt area  = 0.500 * 0.000 / 3 / 0.442 = 0.000 ksi
Required shear stress   (frv) = gage1 ratio * vertical reaction / bolt row count  / bolt area  = 0.50 * 13.00 / 3 / 0.44 = 4.90 ksi
C = no of bolts = 3.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 3.00 = 35.78 kips

Angle 1 Bolt Shear Strength Subtotal = 35.78 kips

Angle 2 Bolt Strength (at Shear Load Only):
Gage ratio:  gage2 ratio = gage1 / (gage1 + gage2) = 2.75 / (2.75 + 2.75) = 0.5
Required tension stress (frt) = gage2 ratio * axial reaction    / bolt row count / bolt area  = 0.500 * 0.000 / 3 / 0.442 = 0.000 ksi
Required shear stress   (frv) = gage2 ratio * vertical reaction / bolt row count  / bolt area  = 0.50 * 13.00 / 3 / 0.44 = 4.90 ksi
C = no of bolts = 3.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 3.00 = 35.78 kips

Angle 2 Bolt Shear Strength Subtotal = 35.78 kips


Total Support Side Bolt Shear Strength = min( Angle1 Bolt Shear/Gage1 Ratio , Angle2 Bolt Shear/Gage2 Ratio ) = min (71.57, 71.57) = 71.57 kips
Bolt Bearing Calcs:
BOLT BEARING AT SUPPORT SIDE:
Angle 1, Vertical Shear Loading: 
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na 
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 0.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 37.732, 6.467) = 6.47 kips/bolt


At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na 
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 3.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 37.732, 16.339) = 11.93 kips/bolt


At Row 3, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na 
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 6.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.59 * 0.31 * 58.00 = 71.82 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 71.82, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 37.732, 16.339) = 11.93 kips/bolt


Bearing Capacity at Shear Plane  = Sum{ Bearing At [(Row)i,(Column)i] } = 
6.467 + 11.928 + 11.928 = 30.32 kips


BOLT BEARING AT SUPPORT SIDE:
Angle 2, Vertical Shear Loading: 
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na 
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 0.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 37.732, 6.467) = 6.47 kips/bolt


At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na 
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 3.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 37.732, 16.339) = 11.93 kips/bolt


At Row 3, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na 
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 6.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.59 * 0.31 * 58.00 = 71.82 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 71.82, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 37.732, 16.339) = 11.93 kips/bolt


Bearing Capacity at Shear Plane  = Sum{ Bearing At [(Row)i,(Column)i] } = 
6.467 + 11.928 + 11.928 = 30.32 kips


Bearing At Support Side Summary:
Bearing Capacity = min(At Angle1 Shear Only/Gage1 Ratio, At Angle2 Shear Only/Gage2 Ratio) = min(30.32/0.50, 30.32/0.50) = 60.65 kips
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 11.9 - 0 - 0 = 11.9 in.
Gross Area (Shear) = [Gross Shear Length] * tw = 11.90 * 0.20 = 2.38 in^2
Net Area (Shear) = [Gross Shear Length] * tw = 11.90 * 0.20 = 2.38 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.38 = 47.60 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 2.38 = 46.41 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Double Angles Welded Bolted Calcs:
Angle1 

Support Angle Leg 


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (8 - 1) = 7.00 in.
Net Shear Length = 7 - (2.5 * (0.812 + 1/16)) = 4.81 in.
Gross Tension Length = [edge dist.] = 1.35 in.
Net Tension Length = (1.35 - (1 + 1/16)/2) = 0.82 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 4.81) + (1.00 * 58.00 * 0.82)) = 33.64 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 7.00) + (1.00 * 58.00 * 0.82)) = 31.09 kips
Block Shear = 31.09 kips

Gross Area = 0.31 * 8.00 = 2.50 in^2
Net Area = (8.00 - (3 *(0.81 + 1/16)) * 0.31 = 1.68 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 2.50 = 36.06 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.68 = 29.27 kips


Beam Angle Leg 

Gross Area = 0.31 * 8.00 = 2.50 in^2
Net Area = 2.50 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fyangle * [Gross Area] = 0.67 * 0.6 * 36.00 * 2.50 = 36.06 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fuangle * [Net Area] = 0.50 * 0.6 * 58.00 * 2.50 = 43.57 kips


Flexural and Buckling Strength:

Eccentricity at Weld = 2.52
Zgross = 5.01 in^3
Znet   = 5.01 in^3
Sgross = 3.34 in^3
Snet   = 3.34 in^3

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Sgross / e = 0.60 * 36.00 * 3.34 / 2.52 = 28.63 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 5.01 / 2.52 = 57.65 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 8.00 in.
c = 2.52 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 8.00 * 36.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (8.00/2.52)^2 )^0.5) = 0.27
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 21.60 * 3.34 / 2.52 = 28.63 kips

Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:

Zgx = 5.01 in^3
Znx = 5.01 in^3
Zgy = 0.20 in^3
Zny = 0.20 in^3

Mrx = vertical reaction * ex = 6.50 * 2.52 = 16.38 kips-in
Mry = axial reaction * ey = 0.00 * 0.26 = 0.00 kips-in
Mcx = 1/omega * Zgx * Min(Fy, Fcr) = 0.60 * 5.01 * Min(36, 36) = 108.17 kips-in
Mcy = 1/omega * Zgy * Fy = 0.60 * 0.20 * 36 = 4.23 kips-in
Shear Stress on Gross Section = 6.50 / 2.50 = 2.60 ksi
Shear Stress on Net Section = 6.50 / 2.50 = 2.60 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 2.50 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 2.50 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 16.38 / 5.01 = 3.27 ksi
Axial Stress on Net Section due to Moment (shear) = 16.38 / 5.01 = 3.27 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.20 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.20 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 3.27 = 3.27 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 3.27 = 3.27 ksi

Shear Yield Stress Capacity (SYSC) = 1/omega * 0.6 * Fy =0.67 * 0.60 * 36.00 = 14.40 ksi
Tensile Yield Stress Capacity (TYSC) = 1/omega * Fy =0.60 * 36.00 = 21.60 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (2.60 / 14.40)^2 + (3.27 / 21.60 )^2 = 0.06 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = 1/omega * 0.6 * Fu =0.50 * 0.60 * 58.00 = 17.40 ksi
Tensile Rupture Stress Capacity (TRSC) = 1/omega * Fu =0.50 * 58.00 = 29.00 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (2.60 / 17.40)^2 + (3.27 / 29.00 )^2 = 0.03 <= 1.0 (OK)


Angle2 

Support Angle Leg 


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (8 - 1) = 7.00 in.
Net Shear Length = 7 - (2.5 * (0.812 + 1/16)) = 4.81 in.
Gross Tension Length = [edge dist.] = 1.35 in.
Net Tension Length = (1.35 - (1 + 1/16)/2) = 0.82 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 4.81) + (1.00 * 58.00 * 0.82)) = 33.64 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 7.00) + (1.00 * 58.00 * 0.82)) = 31.09 kips
Block Shear = 31.09 kips

Gross Area = 0.31 * 8.00 = 2.50 in^2
Net Area = (8.00 - (3 *(0.81 + 1/16)) * 0.31 = 1.68 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 2.50 = 36.06 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.68 = 29.27 kips


Beam Angle Leg 

Gross Area = 0.31 * 8.00 = 2.50 in^2
Net Area = 2.50 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fyangle * [Gross Area] = 0.67 * 0.6 * 36.00 * 2.50 = 36.06 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fuangle * [Net Area] = 0.50 * 0.6 * 58.00 * 2.50 = 43.57 kips


Flexural and Buckling Strength:

Eccentricity at Weld = 2.52
Zgross = 5.01 in^3
Znet   = 5.01 in^3
Sgross = 3.34 in^3
Snet   = 3.34 in^3

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Sgross / e = 0.60 * 36.00 * 3.34 / 2.52 = 28.63 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 5.01 / 2.52 = 57.65 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 8.00 in.
c = 2.52 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 8.00 * 36.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (8.00/2.52)^2 )^0.5) = 0.27
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 21.60 * 3.34 / 2.52 = 28.63 kips

Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:

Zgx = 5.01 in^3
Znx = 5.01 in^3
Zgy = 0.20 in^3
Zny = 0.20 in^3

Mrx = vertical reaction * ex = 6.50 * 2.52 = 16.38 kips-in
Mry = axial reaction * ey = 0.00 * 0.26 = 0.00 kips-in
Mcx = 1/omega * Zgx * Min(Fy, Fcr) = 0.60 * 5.01 * Min(36, 36) = 108.17 kips-in
Mcy = 1/omega * Zgy * Fy = 0.60 * 0.20 * 36 = 4.23 kips-in
Shear Stress on Gross Section = 6.50 / 2.50 = 2.60 ksi
Shear Stress on Net Section = 6.50 / 2.50 = 2.60 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 2.50 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 2.50 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 16.38 / 5.01 = 3.27 ksi
Axial Stress on Net Section due to Moment (shear) = 16.38 / 5.01 = 3.27 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.20 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.20 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 3.27 = 3.27 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 3.27 = 3.27 ksi

Shear Yield Stress Capacity (SYSC) = 1/omega * 0.6 * Fy =0.67 * 0.60 * 36.00 = 14.40 ksi
Tensile Yield Stress Capacity (TYSC) = 1/omega * Fy =0.60 * 36.00 = 21.60 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (2.60 / 14.40)^2 + (3.27 / 21.60 )^2 = 0.06 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = 1/omega * 0.6 * Fu =0.50 * 0.60 * 58.00 = 17.40 ksi
Tensile Rupture Stress Capacity (TRSC) = 1/omega * Fu =0.50 * 58.00 = 29.00 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (2.60 / 17.40)^2 + (3.27 / 29.00 )^2 = 0.03 <= 1.0 (OK)


Total Support Side Shear Yielding Capacity =  min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) =  min(72.1152 , 72.1152) = 72.1152 kips
Total Support Side Shear Rupture Capacity =  min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(58.5466 , 58.5466) = 58.5466 kips
Total Support Side Vertical Block Shear Capacity =  min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(62.1892 , 62.1892) = 62.1892 kips
Total Beam Side Shear Yielding Capacity =  min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(72.1152 , 72.1152) = 72.1152 kips
Total Beam Side Shear Rupture Capacity =  min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(87.1392 , 87.1392) = 87.1392 kips
Total Beam Side Flexure Yielding Capacity =  min (FlexureYieldAngle1/Gage1 Ratio , FlexureYieldAngle2/Gage2 Ratio) = min(57.2518 , 57.2518) = 57.2518 kips
Total Beam Side Flexure Rupture Capacity =  min (FlexureRuptureAngle1/Gage1 Ratio , FlexureRuptureAngle2/Gage2 Ratio) = min(115.299 , 115.299) = 115.299 kips
Total Beam Side Bending Buckling Capacity =  min (BendingBucklingAngle1/Gage1 Ratio , BendingBucklingAngle2/Gage2 Ratio) = min(57.2518 , 57.2518) = 57.2518 kips
Weld Calcs:
Angles Welded to Beam:

Angle1 Beam Weld
k = 0.31
ex = 2.52
a = ex / l = 2.52 / 8.00 = 0.31
Loadangle = 0.00 deg 
Weld Coefficient = 0.6 * Fexx * cphi * arrangement coefficient = 2.79
Dmax1 using min(eqn 9-2, tang - 0.062) 
 = min(tang * Fuang / ( Fexx * C1 * 0.044), tang - 0.062) 
 = min(0.313 * 58.000 / ( 70.000 * 1.000 * 0.044), 0.313 - 0.062) 
 = min(5.868, 4.008)
 = 4.008 
Dmax2 (using eqn 9-3)
 = twbeam * Fubeam / ( Fexx * C1 * 0.088 )
 = 0.200 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 2.101 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.008, 2.101, 12.000)
 = 2.101 

D = 4.00
Weld Strength = 1/omega * weld coefficient * l * D  = 0.50 * 2.79 * 8.00 * 2.10 = 23.47 kips

Angle2 Beam Weld
k = 0.31
ex = 2.52
a = ex / l = 2.52 / 8.00 = 0.31
Loadangle = 0.00 deg 
Weld Coefficient = 0.6 * Fexx * cphi * arrangement coefficient = 2.79
Dmax1 using min(eqn 9-2, tang - 0.062) 
 = min(tang * Fuang / ( Fexx * C1 * 0.044), tang - 0.062) 
 = min(0.313 * 58.000 / ( 70.000 * 1.000 * 0.044), 0.313 - 0.062) 
 = min(5.868, 4.008)
 = 4.008 
Dmax2 (using eqn 9-3)
 = twbeam * Fubeam / ( Fexx * C1 * 0.088 )
 = 0.200 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 2.101 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.008, 2.101, 12.000)
 = 2.101 

D = 4.00
Weld Strength = 1/omega * weld coefficient * l * D  = 0.50 * 2.79 * 8.00 * 2.10 = 23.47 kips

Total Welds Shear Strength = min( Angle1 Weld Shear/Gage Ratio at Angle1 , Angle2 Weld Shear/Gage Ratio at Angle2 ) = min ( 46.9, 46.9) = 46.9 kips