BOLT BEARING AT SUPPORT SIDE:
Angle 1, Vertical Shear Loading:
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing = 2.19 in.
Lcesupp at Support edge = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na
1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang1 at Angle 1 spacing = 2.19 in.
Lceang1 at Angle 1 edge = 0.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 37.732, 6.467) = 6.47 kips/bolt
At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing = 2.19 in.
Lcesupp at Support edge = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na
1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang1 at Angle 1 spacing = 2.19 in.
Lceang1 at Angle 1 edge = 3.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 37.732, 16.339) = 11.93 kips/bolt
At Row 3, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing = 2.19 in.
Lcesupp at Support edge = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na
1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang1 at Angle 1 spacing = 2.19 in.
Lceang1 at Angle 1 edge = 6.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.59 * 0.31 * 58.00 = 71.82 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 71.82, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 37.732, 16.339) = 11.93 kips/bolt
Bearing Capacity at Shear Plane = Sum{ Bearing At [(Row)i,(Column)i] } =
6.467 + 11.928 + 11.928 = 30.32 kips
BOLT BEARING AT SUPPORT SIDE:
Angle 2, Vertical Shear Loading:
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing = 2.19 in.
Lcesupp at Support edge = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na
1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang2 at Angle 2 spacing = 2.19 in.
Lceang2 at Angle 2 edge = 0.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 37.732, 6.467) = 6.47 kips/bolt
At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing = 2.19 in.
Lcesupp at Support edge = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na
1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang2 at Angle 2 spacing = 2.19 in.
Lceang2 at Angle 2 edge = 3.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 37.732, 16.339) = 11.93 kips/bolt
At Row 3, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing = 2.19 in.
Lcesupp at Support edge = na
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (tfsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.65/1) * 65.00 = 55.03 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (tfsup/# bolt sides supported) * Fu = na
1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (tfsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.65/1) * 65.00 = 37.73 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(55.03, na, 37.73) = 37.73 kips/bolt
Lcsang2 at Angle 2 spacing = 2.19 in.
Lceang2 at Angle 2 edge = 6.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.59 * 0.31 * 58.00 = 71.82 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 71.82, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 37.732, 16.339) = 11.93 kips/bolt
Bearing Capacity at Shear Plane = Sum{ Bearing At [(Row)i,(Column)i] } =
6.467 + 11.928 + 11.928 = 30.32 kips
Bearing At Support Side Summary:
Bearing Capacity = min(At Angle1 Shear Only/Gage1 Ratio, At Angle2 Shear Only/Gage2 Ratio) = min(30.32/0.50, 30.32/0.50) = 60.65 kips |
Angle1
Support Angle Leg
Block Shear
Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (8 - 1) = 7.00 in.
Net Shear Length = 7 - (2.5 * (0.812 + 1/16)) = 4.81 in.
Gross Tension Length = [edge dist.] = 1.35 in.
Net Tension Length = (1.35 - (1 + 1/16)/2) = 0.82 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.50 * 0.31 * ((0.60 * 58.00 * 4.81) + (1.00 * 58.00 * 0.82)) = 33.64 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.50 * 0.31 * ((0.60 * 36.00 * 7.00) + (1.00 * 58.00 * 0.82)) = 31.09 kips
Block Shear = 31.09 kips
Gross Area = 0.31 * 8.00 = 2.50 in^2
Net Area = (8.00 - (3 *(0.81 + 1/16)) * 0.31 = 1.68 in^2
Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 2.50 = 36.06 kips
Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.68 = 29.27 kips
Beam Angle Leg
Gross Area = 0.31 * 8.00 = 2.50 in^2
Net Area = 2.50 in^2
Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fyangle * [Gross Area] = 0.67 * 0.6 * 36.00 * 2.50 = 36.06 kips
Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fuangle * [Net Area] = 0.50 * 0.6 * 58.00 * 2.50 = 43.57 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 2.52
Zgross = 5.01 in^3
Znet = 5.01 in^3
Sgross = 3.34 in^3
Snet = 3.34 in^3
Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Sgross / e = 0.60 * 36.00 * 3.34 / 2.52 = 28.63 kips
Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 5.01 / 2.52 = 57.65 kips
Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 8.00 in.
c = 2.52 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 8.00 * 36.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (8.00/2.52)^2 )^0.5) = 0.27
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi
Using Eq. 9-6
Buckling = Fcr * Sgross / e = 21.60 * 3.34 / 2.52 = 28.63 kips
Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:
Zgx = 5.01 in^3
Znx = 5.01 in^3
Zgy = 0.20 in^3
Zny = 0.20 in^3
Mrx = vertical reaction * ex = 6.50 * 2.52 = 16.38 kips-in
Mry = axial reaction * ey = 0.00 * 0.26 = 0.00 kips-in
Mcx = 1/omega * Zgx * Min(Fy, Fcr) = 0.60 * 5.01 * Min(36, 36) = 108.17 kips-in
Mcy = 1/omega * Zgy * Fy = 0.60 * 0.20 * 36 = 4.23 kips-in
Shear Stress on Gross Section = 6.50 / 2.50 = 2.60 ksi
Shear Stress on Net Section = 6.50 / 2.50 = 2.60 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 2.50 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 2.50 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 16.38 / 5.01 = 3.27 ksi
Axial Stress on Net Section due to Moment (shear) = 16.38 / 5.01 = 3.27 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.20 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.20 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 3.27 = 3.27 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 3.27 = 3.27 ksi
Shear Yield Stress Capacity (SYSC) = 1/omega * 0.6 * Fy =0.67 * 0.60 * 36.00 = 14.40 ksi
Tensile Yield Stress Capacity (TYSC) = 1/omega * Fy =0.60 * 36.00 = 21.60 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (2.60 / 14.40)^2 + (3.27 / 21.60 )^2 = 0.06 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = 1/omega * 0.6 * Fu =0.50 * 0.60 * 58.00 = 17.40 ksi
Tensile Rupture Stress Capacity (TRSC) = 1/omega * Fu =0.50 * 58.00 = 29.00 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (2.60 / 17.40)^2 + (3.27 / 29.00 )^2 = 0.03 <= 1.0 (OK)
Angle2
Support Angle Leg
Block Shear
Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (8 - 1) = 7.00 in.
Net Shear Length = 7 - (2.5 * (0.812 + 1/16)) = 4.81 in.
Gross Tension Length = [edge dist.] = 1.35 in.
Net Tension Length = (1.35 - (1 + 1/16)/2) = 0.82 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length]))
= 0.50 * 0.31 * ((0.60 * 58.00 * 4.81) + (1.00 * 58.00 * 0.82)) = 33.64 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length]))
= 0.50 * 0.31 * ((0.60 * 36.00 * 7.00) + (1.00 * 58.00 * 0.82)) = 31.09 kips
Block Shear = 31.09 kips
Gross Area = 0.31 * 8.00 = 2.50 in^2
Net Area = (8.00 - (3 *(0.81 + 1/16)) * 0.31 = 1.68 in^2
Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 2.50 = 36.06 kips
Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.68 = 29.27 kips
Beam Angle Leg
Gross Area = 0.31 * 8.00 = 2.50 in^2
Net Area = 2.50 in^2
Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fyangle * [Gross Area] = 0.67 * 0.6 * 36.00 * 2.50 = 36.06 kips
Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fuangle * [Net Area] = 0.50 * 0.6 * 58.00 * 2.50 = 43.57 kips
Flexural and Buckling Strength:
Eccentricity at Weld = 2.52
Zgross = 5.01 in^3
Znet = 5.01 in^3
Sgross = 3.34 in^3
Snet = 3.34 in^3
Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Sgross / e = 0.60 * 36.00 * 3.34 / 2.52 = 28.63 kips
Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 5.01 / 2.52 = 57.65 kips
Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.31 in.
ho = 8.00 in.
c = 2.52 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 8.00 * 36.00^0.5 / (10 * 0.31 * (475.00 + 280.00 * (8.00/2.52)^2 )^0.5) = 0.27
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi
Using Eq. 9-6
Buckling = Fcr * Sgross / e = 21.60 * 3.34 / 2.52 = 28.63 kips
Stress Interaction on Angle due to Combined Shear, Axial and Moment Loading:
Zgx = 5.01 in^3
Znx = 5.01 in^3
Zgy = 0.20 in^3
Zny = 0.20 in^3
Mrx = vertical reaction * ex = 6.50 * 2.52 = 16.38 kips-in
Mry = axial reaction * ey = 0.00 * 0.26 = 0.00 kips-in
Mcx = 1/omega * Zgx * Min(Fy, Fcr) = 0.60 * 5.01 * Min(36, 36) = 108.17 kips-in
Mcy = 1/omega * Zgy * Fy = 0.60 * 0.20 * 36 = 4.23 kips-in
Shear Stress on Gross Section = 6.50 / 2.50 = 2.60 ksi
Shear Stress on Net Section = 6.50 / 2.50 = 2.60 ksi
Axial Stress on Gross Section due to Axial force = 0.00 / 2.50 = 0.00 ksi
Axial Stress on Net Section due to Axial force = 0.00 / 2.50 = 0.00 ksi
Axial Stress on Gross Section due to Moment (shear) = 16.38 / 5.01 = 3.27 ksi
Axial Stress on Net Section due to Moment (shear) = 16.38 / 5.01 = 3.27 ksi
Axial Stress on Gross Section due to Moment (axial) = 0.00 / 0.20 = 0.00 ksi
Axial Stress on Net Section due to Moment (axial) = 0.00 / 0.20 = 0.00 ksi
Axial Stress on Gross Section (total) = 0.00 + 0.00 + 3.27 = 3.27 ksi
Axial Stress on Net Section (total) = 0.00 + 0.00 + 3.27 = 3.27 ksi
Shear Yield Stress Capacity (SYSC) = 1/omega * 0.6 * Fy =0.67 * 0.60 * 36.00 = 14.40 ksi
Tensile Yield Stress Capacity (TYSC) = 1/omega * Fy =0.60 * 36.00 = 21.60 ksi
Stress Interaction at Gross Section (elliptical):
(fvg / SYSC)^2 + (fag / TYSC )^2 = (2.60 / 14.40)^2 + (3.27 / 21.60 )^2 = 0.06 <= 1.0 (OK)
Shear Rupture Stress Capacity (SRSC) = 1/omega * 0.6 * Fu =0.50 * 0.60 * 58.00 = 17.40 ksi
Tensile Rupture Stress Capacity (TRSC) = 1/omega * Fu =0.50 * 58.00 = 29.00 ksi
Stress Interaction at Net Section (elliptical):
(fvn / SRSC)^2 + (fan / TRSC )^2 = (2.60 / 17.40)^2 + (3.27 / 29.00 )^2 = 0.03 <= 1.0 (OK)
Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(72.1152 , 72.1152) = 72.1152 kips
Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(58.5466 , 58.5466) = 58.5466 kips
Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(62.1892 , 62.1892) = 62.1892 kips
Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(72.1152 , 72.1152) = 72.1152 kips
Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(87.1392 , 87.1392) = 87.1392 kips
Total Beam Side Flexure Yielding Capacity = min (FlexureYieldAngle1/Gage1 Ratio , FlexureYieldAngle2/Gage2 Ratio) = min(57.2518 , 57.2518) = 57.2518 kips
Total Beam Side Flexure Rupture Capacity = min (FlexureRuptureAngle1/Gage1 Ratio , FlexureRuptureAngle2/Gage2 Ratio) = min(115.299 , 115.299) = 115.299 kips
Total Beam Side Bending Buckling Capacity = min (BendingBucklingAngle1/Gage1 Ratio , BendingBucklingAngle2/Gage2 Ratio) = min(57.2518 , 57.2518) = 57.2518 kips |
Angles Welded to Beam:
Angle1 Beam Weld
k = 0.31
ex = 2.52
a = ex / l = 2.52 / 8.00 = 0.31
Loadangle = 0.00 deg
Weld Coefficient = 0.6 * Fexx * cphi * arrangement coefficient = 2.79
Dmax1 using min(eqn 9-2, tang - 0.062)
= min(tang * Fuang / ( Fexx * C1 * 0.044), tang - 0.062)
= min(0.313 * 58.000 / ( 70.000 * 1.000 * 0.044), 0.313 - 0.062)
= min(5.868, 4.008)
= 4.008
Dmax2 (using eqn 9-3)
= twbeam * Fubeam / ( Fexx * C1 * 0.088 )
= 0.200 * 65.000 / ( 70.000 * 1.000 * 0.088 )
= 2.101
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.008, 2.101, 12.000)
= 2.101
D = 4.00
Weld Strength = 1/omega * weld coefficient * l * D = 0.50 * 2.79 * 8.00 * 2.10 = 23.47 kips
Angle2 Beam Weld
k = 0.31
ex = 2.52
a = ex / l = 2.52 / 8.00 = 0.31
Loadangle = 0.00 deg
Weld Coefficient = 0.6 * Fexx * cphi * arrangement coefficient = 2.79
Dmax1 using min(eqn 9-2, tang - 0.062)
= min(tang * Fuang / ( Fexx * C1 * 0.044), tang - 0.062)
= min(0.313 * 58.000 / ( 70.000 * 1.000 * 0.044), 0.313 - 0.062)
= min(5.868, 4.008)
= 4.008
Dmax2 (using eqn 9-3)
= twbeam * Fubeam / ( Fexx * C1 * 0.088 )
= 0.200 * 65.000 / ( 70.000 * 1.000 * 0.088 )
= 2.101
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.008, 2.101, 12.000)
= 2.101
D = 4.00
Weld Strength = 1/omega * weld coefficient * l * D = 0.50 * 2.79 * 8.00 * 2.10 = 23.47 kips
Total Welds Shear Strength = min( Angle1 Weld Shear/Gage Ratio at Angle1 , Angle2 Weld Shear/Gage Ratio at Angle2 ) = min ( 46.9, 46.9) = 46.9 kips |