Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
Session Title: Baseline
Session Date: 2018-08-31 18:06:55
Model Name: Josh_Demo_2000_Tons.db1
B+Op Status: B+Op was disabled
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report  |  B+Op Comparison Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed  |  No Connections Reference Map
 
Shear Plate Reports: Specs  Strengths (Shear Only Connections)  Strengths (Shear & Axial Connections)  Welds  Doublers
Single Angle Reports:  Specs  Strengths (Shear & Axial)  Welds  Doublers
Double Angle Reports:  Support Side Specs  Beam Side Specs  Strengths (Shear & Axial)  Welds  Doublers
End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds
Moment Reports:  Specs  Support Strengths  Support Reinforcement Strengths  Moment Plate Strengths  Welds
Moment Group Reports:  Doubler Plate Specs  Doubler Plate Welds  Stiffener / Moment Plate Specs  Stiffener / Moment Plate Welds

Connection Number:
bcw.s.s.00121.00538
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W12X14
Column profile: W14X90
Slope: 0 deg.
Skew: 90
Vertical Offset: 0
Horizontal Offset: 0
Span: 7.4 ft.
Reaction, V: 23 kips
Shear Capacity, Rn: 24.6 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A36
Weld grade: E70
Shear Plate Size: 16.750 in. x 8.500 in. x 0.875 in.
Configuration Geometry:
Welds at shear plate to support: 9/16 FILLET, 9/16 FILLET
Bolt: 3 rows x 3 columns 0.75 in. Diameter A325N_TC bolts
Vertical spacing: 3 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 7.56 in.
Beam centerline setback = 7.56 in.
Edge distance at vertical edge of plate: 1.5 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.69 in.
Horizontal distance to first hole: 9.25 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.812 in.
Holes in shear plate: SSL diameter = 0.812 in., slot width = 1 in.
Bolt Strength Calcs:
BOLT STRENGTH BEAM SIDE:

Bolt Strength:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 12.250 in.
Angle = 0.000 deg.
C = 2.168
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 2.17 = 25.86 kips
Bolt Bearing Calcs:
BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.19, -0.00)
At Row 1, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam   = <6.82, 9.52>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 3.28 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.20/1) * 65.00 = 24.30 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.28 * (0.20/1) * 65.00 = 25.61 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(24.30, 25.61, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate   = <-6.82, -9.52>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 8.42 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.88 * 58.00 = 92.86 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 8.42 * 0.88 * 58.00 = 256.32 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.88 * 58.00 = 45.67 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(92.86, 256.32, 45.67) = 45.67 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 45.675) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 11.71 = 1.00

At Row 1, At Column 2:
Ri1 = 11.13 kips
Ri vector at Beam   = <10.34, 4.10>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 7.73 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.20/1) * 65.00 = 24.30 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 7.73 * (0.20/1) * 65.00 = 60.33 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(24.30, 60.33, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate   = <-10.34, -4.10>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 12.64 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.88 * 58.00 = 92.86 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.64 * 0.88 * 58.00 = 384.87 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.88 * 58.00 = 45.67 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(92.86, 384.87, 45.67) = 45.67 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 45.675) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 11.13 = 1.05

At Row 1, At Column 3:
Ri1 = 11.26 kips
Ri vector at Beam   = <9.64, -5.82>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 16.82 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.20/1) * 65.00 = 24.30 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 16.82 * (0.20/1) * 65.00 = 131.18 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(24.30, 131.18, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate   = <-9.64, 5.82>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 1.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.88 * 58.00 = 92.86 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.84 * 0.88 * 58.00 = 55.88 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.88 * 58.00 = 45.67 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(92.86, 55.88, 45.67) = 45.67 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 45.675) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 11.26 = 1.04

At Row 2, At Column 1:
Ri1 = 11.51 kips
Ri vector at Beam   = <0.00, 11.51>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 5.59 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.20/1) * 65.00 = 17.06 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.59 * (0.20/1) * 65.00 = 43.63 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(17.06, 43.63, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate   = <-0.00, -11.51>
Lcsshpl at Shear Plate spacing  = 2.19 in.
Lceshpl at Shear Plate edge    = 3.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.88 * 58.00 = 66.61 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.84 * 0.88 * 58.00 = 117.04 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.88 * 58.00 = 45.67 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(66.61, 117.04, 45.67) = 45.67 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 45.675) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 11.51 = 1.02

At Row 2, At Column 2:
Ri1 = 8.53 kips
Ri vector at Beam   = <0.00, 8.53>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 5.59 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.20/1) * 65.00 = 17.06 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.59 * (0.20/1) * 65.00 = 43.63 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(17.06, 43.63, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate   = <-0.00, -8.53>
Lcsshpl at Shear Plate spacing  = 2.19 in.
Lceshpl at Shear Plate edge    = 3.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.88 * 58.00 = 66.61 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.84 * 0.88 * 58.00 = 117.04 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.88 * 58.00 = 45.67 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(66.61, 117.04, 45.67) = 45.67 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 45.675) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 8.53 = 1.37

At Row 2, At Column 3:
Ri1 = 9.78 kips
Ri vector at Beam   = <0.00, -9.78>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 5.49 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.20/1) * 65.00 = 17.06 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.49 * (0.20/1) * 65.00 = 42.85 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(17.06, 42.85, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate   = <-0.00, 9.78>
Lcsshpl at Shear Plate spacing  = 2.19 in.
Lceshpl at Shear Plate edge    = 3.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.88 * 58.00 = 66.61 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.84 * 0.88 * 58.00 = 117.04 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.88 * 58.00 = 45.67 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(66.61, 117.04, 45.67) = 45.67 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 45.675) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 9.78 = 1.20

At Row 3, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam   = <-6.82, 9.52>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 2.49 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.20/1) * 65.00 = 24.30 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.49 * (0.20/1) * 65.00 = 19.44 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(24.30, 19.44, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate   = <6.82, -9.52>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 1.04 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.88 * 58.00 = 92.86 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.04 * 0.88 * 58.00 = 31.60 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.88 * 58.00 = 45.67 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(92.86, 31.60, 45.67) = 31.60 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 31.600) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 11.71 = 1.00

At Row 3, At Column 2:
Ri1 = 11.13 kips
Ri vector at Beam   = <-10.34, 4.10>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 4.64 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.20/1) * 65.00 = 24.30 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.64 * (0.20/1) * 65.00 = 36.16 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(24.30, 36.16, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate   = <10.34, -4.10>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 2.85 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.88 * 58.00 = 92.86 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.85 * 0.88 * 58.00 = 86.90 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.88 * 58.00 = 45.67 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(92.86, 86.90, 45.67) = 45.67 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 45.675) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 11.13 = 1.05

At Row 3, At Column 3:
Ri1 = 11.26 kips
Ri vector at Beam   = <-9.64, -5.82>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 5.21 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.20/1) * 65.00 = 24.30 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.21 * (0.20/1) * 65.00 = 40.60 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(24.30, 40.60, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate   = <9.64, 5.82>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 1.17 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.88 * 58.00 = 92.86 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.17 * 0.88 * 58.00 = 35.57 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.88 * 58.00 = 45.67 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(92.86, 35.57, 45.67) = 35.57 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 35.567) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 11.26 = 1.04

Min Bolt Shear Demand to Bearing ratio for vertical shear only = min(1.0, 0.999349, 1.05159, 1.03877, 1.01662, 1.37132, 1.19605, 0.999352, 1.0516, 1.03879) = 1.00


Bearing Capacity at Beam and Shear Plate at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 25.86 = 25.84 kips
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 11.9 - 0 - 0 = 11.9 in.
Gross Area (Shear) = [Web Depth] * tw = 11.90 * 0.20 = 2.38 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (11.90 - (3 * 0.88)) * 0.20 = 1.86 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.38 = 47.60 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.86 = 36.17 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Shear Plate Calcs:
Gross Area = 0.88 * 8.50 = 7.44 in^2
Net Area = (8.50 - (3 *(0.81 + 1/16))) * 0.88 = 5.14 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 36.00 * 7.44 = 107.10 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 58.00 * 5.14 = 89.45 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (8.5 - 1.25) = 7.25 in.
Net Shear Length = 7.25 - (2.5 * (0.812 + 0.0625)) = 5.06 in.
Gross Tension Length = (6 + 1.5) = 7.50 in.
Net Tension Length = 7.5 - (2.5 * (1 + 0.0625)) = 4.84 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.88 * ((0.60 * 58.00 * 5.06) + (0.50 * 58.00 * 4.84)) = 138.53 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.88 * ((0.60 * 36.00 * 7.25) + (0.50 * 58.00 * 4.84)) = 129.97 kips
Block Shear = 129.97 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (8.5 - 1.25) = 14.50 in.
Net Shear Length = 2 * ( 7.25 - (2.5 * (0.812 + 0.0625)) ) = 10.12 in.
Gross Tension Length = (6 + 1.5) - 1.5 = 6.00 in.
Net Tension Length = 6 - 2 * (1 + 0.0625) = 3.88 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.88 * ((0.60 * 58.00 * 10.12) + (0.50 * 58.00 * 3.88)) = 203.32 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.88 * ((0.60 * 36.00 * 14.50) + (0.50 * 58.00 * 3.88)) = 186.19 kips
Block Shear = 186.19 kips

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.25 in.
Zgross = 15.80 in^3
Znet   = 11.04 in^3
Sgross = 10.54 in^3
Snet   = 7.29 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 11.04 / 9.25 = 34.62 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.88 in.
ho = 8.50 in.
c = 9.25 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 8.50 * 36.00^0.5 / (10 * 0.88 * (475.00 + 280.00 * (8.50/9.25)^2 )^0.5) = 0.22
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 21.60 * 10.54 / 9.25 = 24.60 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 12.25 in.
Zgross = 15.80
Znet = 11.04
Mr = Vr * e = 23.00 * 12.25 = 281.75 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 36.00 * 15.80 = 341.38 kips-in
Vr = 23.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 36.00 * 7.44 = 107.10 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (23.00 / 107.10)^2 + (281.75 / 341.38)^2 = 0.73 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
tmax = 6 * Mmax / (Fypl * d^2) Eq. 10-3
Mmax = (1/0.9) * Fv * Ab * C' Eq. 10-4
Mmax = (1/0.9) * 54 * 0.441786 * 28.0478 = 743.467 kips-in
tmax = 6 * 743.467 / (36 * 8.5^2) = 1.72 in.
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 8.50 * 0.88^3 / 9.25^2 = 188.17 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 23.00 * ((0.19 + 0.88) / 2) = 12.22 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 =  ((0.67 * 0.6 * 36.00) - (23.00 / (8.50 * 0.88))) * 0.5 * 8.50 * 0.88^2 = 36.79 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 8.500 in.
Shear Load per inch per weld, fv = R/Lv/2 = 23.000 / 8.500 / 2 = 1.353 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 1.353 / (0.500 * 1.856) = 1.458/16

Minimum fillet weld size : 
   At shear only load case = 0.09 in.
   per Table J2.4     = 0.19 in.
   5/8(tp)            = 0.55 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 0.875 * 58.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 8.202 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 0.440 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 4.622 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(8.202, 4.622, 12.000)
 = 4.622 

Use weld size
D1 = 9.00
D2 = 9.00

Weld Strength :
Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 8.50 * (4.62 + 4.62) = 72.93 kips