Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
Session Title: Baseline
Session Date: 2018-08-31 18:06:55
Model Name: Josh_Demo_2000_Tons.db1
B+Op Status: B+Op was disabled
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report  |  B+Op Comparison Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed  |  No Connections Reference Map
 
Shear Plate Reports: Specs  Strengths (Shear Only Connections)  Strengths (Shear & Axial Connections)  Welds  Doublers
Single Angle Reports:  Specs  Strengths (Shear & Axial)  Welds  Doublers
Double Angle Reports:  Support Side Specs  Beam Side Specs  Strengths (Shear & Axial)  Welds  Doublers
End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds
Moment Reports:  Specs  Support Strengths  Support Reinforcement Strengths  Moment Plate Strengths  Welds
Moment Group Reports:  Doubler Plate Specs  Doubler Plate Welds  Stiffener / Moment Plate Specs  Stiffener / Moment Plate Welds

Connection Number:
bcw.s.s.00219.00636
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W12X14
Column profile: W14X90
Slope: 0 deg.
Skew: 90
Vertical Offset: 0
Horizontal Offset: 0
Span: 7.44 ft.
Reaction, V: 26 kips
Shear Capacity, Rn: 26.2 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A36
Weld grade: E70
Shear Plate Size: 17.750 in. x 9.000 in. x 0.875 in.
Configuration Geometry:
Welds at shear plate to support: 9/16 FILLET, 9/16 FILLET
Bolt: 3 rows x 3 columns 1 in. Diameter A325N_TC bolts
Vertical spacing: 3 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 7.56 in.
Beam centerline setback = 7.56 in.
Edge distance at vertical edge of plate: 2 in.
Edge distance at top edge of plate: 1.5 in.
Edge distance at bottom edge of plate: 1.5 in.
Edge distance at vertical edge of beam: 2.19 in.
Horizontal distance to first hole: 9.75 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 1.06 in.
Holes in shear plate: SSL diameter = 1.06 in., slot width = 1.31 in.
Bolt Strength Calcs:
BOLT STRENGTH BEAM SIDE:

Bolt Strength:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 12.750 in.
Angle = 0.000 deg.
C = 2.091
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 21.21 * 2.09 = 44.34 kips
Bolt Bearing Calcs:
BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.14, -0.00)
At Row 1, At Column 1:
Ri1 = 20.81 kips
Ri vector at Beam   = <12.22, 16.85>
Lcsbm at Beam spacing  = 2.76 in.
Lcebm at Beam edge    = 3.18 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.76 * (0.20/1) * 65.00 = 21.55 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.18 * (0.20/1) * 65.00 = 24.77 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.20/1) * 65.00 = 15.60 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(21.55, 24.77, 15.60) = 15.60 kips/bolt
Ri vector at Shear Plate   = <-12.22, -16.85>
Lcsshpl at Shear Plate spacing  = 2.67 in.
Lceshpl at Shear Plate edge    = 8.61 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.67 * 0.88 * 58.00 = 81.44 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 8.61 * 0.88 * 58.00 = 262.17 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 0.88 * 58.00 = 60.90 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(81.44, 262.17, 60.90) = 60.90 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(15.600, 60.900) = 15.60 kips/bolt
Bolt Shear Demand to Bearing ratio = 15.60 / 20.81 = 0.75

At Row 1, At Column 2:
Ri1 = 19.79 kips
Ri vector at Beam   = <18.51, 7.00>
Lcsbm at Beam spacing  = 2.76 in.
Lcebm at Beam edge    = 7.95 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.76 * (0.20/1) * 65.00 = 21.55 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 7.95 * (0.20/1) * 65.00 = 61.98 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.20/1) * 65.00 = 15.60 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(21.55, 61.98, 15.60) = 15.60 kips/bolt
Ri vector at Shear Plate   = <-18.51, -7.00>
Lcsshpl at Shear Plate spacing  = 2.67 in.
Lceshpl at Shear Plate edge    = 12.93 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.67 * 0.88 * 58.00 = 81.44 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.93 * 0.88 * 58.00 = 393.73 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 0.88 * 58.00 = 60.90 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(81.44, 393.73, 60.90) = 60.90 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(15.600, 60.900) = 15.60 kips/bolt
Bolt Shear Demand to Bearing ratio = 15.60 / 19.79 = 0.79

At Row 1, At Column 3:
Ri1 = 20.07 kips
Ri vector at Beam   = <17.05, -10.59>
Lcsbm at Beam spacing  = 2.76 in.
Lcebm at Beam edge    = 16.33 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.76 * (0.20/1) * 65.00 = 21.55 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 16.33 * (0.20/1) * 65.00 = 127.36 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.20/1) * 65.00 = 15.60 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(21.55, 127.36, 15.60) = 15.60 kips/bolt
Ri vector at Shear Plate   = <-17.05, 10.59>
Lcsshpl at Shear Plate spacing  = 2.67 in.
Lceshpl at Shear Plate edge    = 2.07 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.67 * 0.88 * 58.00 = 81.44 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.07 * 0.88 * 58.00 = 62.99 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 0.88 * 58.00 = 60.90 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(81.44, 62.99, 60.90) = 60.90 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(15.600, 60.900) = 15.60 kips/bolt
Bolt Shear Demand to Bearing ratio = 15.60 / 20.07 = 0.78

At Row 2, At Column 1:
Ri1 = 20.45 kips
Ri vector at Beam   = <0.00, 20.45>
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 5.47 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.20/1) * 65.00 = 15.11 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.47 * (0.20/1) * 65.00 = 42.66 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.20/1) * 65.00 = 15.60 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(15.11, 42.66, 15.60) = 15.11 kips/bolt
Ri vector at Shear Plate   = <-0.00, -20.45>
Lcsshpl at Shear Plate spacing  = 1.94 in.
Lceshpl at Shear Plate edge    = 3.97 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 0.88 * 58.00 = 59.00 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.97 * 0.88 * 58.00 = 120.85 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 0.88 * 58.00 = 60.90 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(59.00, 120.85, 60.90) = 59.00 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(15.112, 58.997) = 15.11 kips/bolt
Bolt Shear Demand to Bearing ratio = 15.11 / 20.45 = 0.74

At Row 2, At Column 2:
Ri1 = 14.96 kips
Ri vector at Beam   = <0.00, 14.96>
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 5.47 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.20/1) * 65.00 = 15.11 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.47 * (0.20/1) * 65.00 = 42.66 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.20/1) * 65.00 = 15.60 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(15.11, 42.66, 15.60) = 15.11 kips/bolt
Ri vector at Shear Plate   = <-0.00, -14.96>
Lcsshpl at Shear Plate spacing  = 1.94 in.
Lceshpl at Shear Plate edge    = 3.97 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 0.88 * 58.00 = 59.00 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.97 * 0.88 * 58.00 = 120.85 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 0.88 * 58.00 = 60.90 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(59.00, 120.85, 60.90) = 59.00 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(15.112, 58.997) = 15.11 kips/bolt
Bolt Shear Demand to Bearing ratio = 15.11 / 14.96 = 1.01

At Row 2, At Column 3:
Ri1 = 17.58 kips
Ri vector at Beam   = <0.00, -17.58>
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 5.37 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.20/1) * 65.00 = 15.11 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.37 * (0.20/1) * 65.00 = 41.88 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.20/1) * 65.00 = 15.60 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(15.11, 41.88, 15.60) = 15.11 kips/bolt
Ri vector at Shear Plate   = <-0.00, 17.58>
Lcsshpl at Shear Plate spacing  = 1.94 in.
Lceshpl at Shear Plate edge    = 3.97 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 0.88 * 58.00 = 59.00 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.97 * 0.88 * 58.00 = 120.85 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 0.88 * 58.00 = 60.90 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(59.00, 120.85, 60.90) = 59.00 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(15.112, 58.997) = 15.11 kips/bolt
Bolt Shear Demand to Bearing ratio = 15.11 / 17.58 = 0.86

At Row 3, At Column 1:
Ri1 = 20.81 kips
Ri vector at Beam   = <-12.22, 16.85>
Lcsbm at Beam spacing  = 2.76 in.
Lcebm at Beam edge    = 3.19 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.76 * (0.20/1) * 65.00 = 21.55 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.19 * (0.20/1) * 65.00 = 24.91 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.20/1) * 65.00 = 15.60 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(21.55, 24.91, 15.60) = 15.60 kips/bolt
Ri vector at Shear Plate   = <12.22, -16.85>
Lcsshpl at Shear Plate spacing  = 2.67 in.
Lceshpl at Shear Plate edge    = 1.20 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.67 * 0.88 * 58.00 = 81.44 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.20 * 0.88 * 58.00 = 36.44 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 0.88 * 58.00 = 60.90 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(81.44, 36.44, 60.90) = 36.44 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(15.600, 36.443) = 15.60 kips/bolt
Bolt Shear Demand to Bearing ratio = 15.60 / 20.81 = 0.75

At Row 3, At Column 2:
Ri1 = 19.79 kips
Ri vector at Beam   = <-18.51, 7.00>
Lcsbm at Beam spacing  = 2.76 in.
Lcebm at Beam edge    = 5.02 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.76 * (0.20/1) * 65.00 = 21.55 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.02 * (0.20/1) * 65.00 = 39.12 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.20/1) * 65.00 = 15.60 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(21.55, 39.12, 15.60) = 15.60 kips/bolt
Ri vector at Shear Plate   = <18.51, -7.00>
Lcsshpl at Shear Plate spacing  = 2.67 in.
Lceshpl at Shear Plate edge    = 3.54 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.67 * 0.88 * 58.00 = 81.44 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.54 * 0.88 * 58.00 = 107.69 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 0.88 * 58.00 = 60.90 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(81.44, 107.69, 60.90) = 60.90 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(15.600, 60.900) = 15.60 kips/bolt
Bolt Shear Demand to Bearing ratio = 15.60 / 19.79 = 0.79

At Row 3, At Column 3:
Ri1 = 20.07 kips
Ri vector at Beam   = <-17.04, -10.60>
Lcsbm at Beam spacing  = 2.76 in.
Lcebm at Beam edge    = 4.96 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.76 * (0.20/1) * 65.00 = 21.55 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.96 * (0.20/1) * 65.00 = 38.70 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.20/1) * 65.00 = 15.60 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(21.55, 38.70, 15.60) = 15.60 kips/bolt
Ri vector at Shear Plate   = <17.04, 10.60>
Lcsshpl at Shear Plate spacing  = 2.67 in.
Lceshpl at Shear Plate edge    = 1.58 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.67 * 0.88 * 58.00 = 81.44 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.58 * 0.88 * 58.00 = 48.18 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 0.88 * 58.00 = 60.90 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(81.44, 48.18, 60.90) = 48.18 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(15.600, 48.180) = 15.60 kips/bolt
Bolt Shear Demand to Bearing ratio = 15.60 / 20.07 = 0.78

Min Bolt Shear Demand to Bearing ratio for vertical shear only = min(1.0, 0.749512, 0.788379, 0.777298, 0.738977, 1.01028, 0.859765, 0.749515, 0.788399, 0.777312) = 0.74


Bearing Capacity at Beam and Shear Plate at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 0.74 * 44.34 = 32.77 kips
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 11.9 - 0 - 0 = 11.9 in.
Gross Area (Shear) = [Web Depth] * tw = 11.90 * 0.20 = 2.38 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (11.90 - (3 * 1.12)) * 0.20 = 1.71 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.38 = 47.60 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.71 = 33.25 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Shear Plate Calcs:
Gross Area = 0.88 * 9.00 = 7.88 in^2
Net Area = (9.00 - (3 *(1.06 + 1/16))) * 0.88 = 4.92 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 36.00 * 7.88 = 113.40 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 58.00 * 4.92 = 85.64 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (9 - 1.5) = 7.50 in.
Net Shear Length = 7.5 - (2.5 * (1.06 + 0.0625)) = 4.69 in.
Gross Tension Length = (6 + 2) = 8.00 in.
Net Tension Length = 8 - (2.5 * (1.31 + 0.0625)) = 4.56 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.88 * ((0.60 * 58.00 * 4.69) + (0.50 * 58.00 * 4.56)) = 129.25 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.88 * ((0.60 * 36.00 * 7.50) + (0.50 * 58.00 * 4.56)) = 128.76 kips
Block Shear = 128.76 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (9 - 1.5) = 15.00 in.
Net Shear Length = 2 * ( 7.5 - (2.5 * (1.06 + 0.0625)) ) = 9.38 in.
Gross Tension Length = (6 + 2) - 2 = 6.00 in.
Net Tension Length = 6 - 2 * (1.31 + 0.0625) = 3.25 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.88 * ((0.60 * 58.00 * 9.38) + (0.50 * 58.00 * 3.25)) = 183.97 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.88 * ((0.60 * 36.00 * 15.00) + (0.50 * 58.00 * 3.25)) = 182.98 kips
Block Shear = 182.98 kips

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.75 in.
Zgross = 17.72 in^3
Znet   = 11.54 in^3
Sgross = 11.81 in^3
Snet   = 7.88 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 11.54 / 9.75 = 34.31 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.88 in.
ho = 9.00 in.
c = 9.75 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 9.00 * 36.00^0.5 / (10 * 0.88 * (475.00 + 280.00 * (9.00/9.75)^2 )^0.5) = 0.23
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 21.60 * 11.81 / 9.75 = 26.17 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 12.75 in.
Zgross = 17.72
Znet = 11.54
Mr = Vr * e = 26.00 * 12.75 = 331.50 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 36.00 * 17.72 = 382.72 kips-in
Vr = 26.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 36.00 * 7.88 = 113.40 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (26.00 / 113.40)^2 + (331.50 / 382.72)^2 = 0.80 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
tmax = 6 * Mmax / (Fypl * d^2) Eq. 10-3
Mmax = (1/0.9) * Fv * Ab * C' Eq. 10-4
Mmax = (1/0.9) * 54 * 0.785398 * 28.0478 = 1321.72 kips-in
tmax = 6 * 1321.72 / (36 * 9^2) = 2.72 in.
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 9.00 * 0.88^3 / 9.75^2 = 179.33 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 26.00 * ((0.19 + 0.88) / 2) = 13.81 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 =  ((0.67 * 0.6 * 36.00) - (26.00 / (9.00 * 0.88))) * 0.5 * 9.00 * 0.88^2 = 38.24 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 9.000 in.
Shear Load per inch per weld, fv = R/Lv/2 = 26.000 / 9.000 / 2 = 1.444 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 1.444 / (0.500 * 1.856) = 1.556/16

Minimum fillet weld size : 
   At shear only load case = 0.10 in.
   per Table J2.4     = 0.19 in.
   5/8(tp)            = 0.55 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 0.875 * 58.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 8.202 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 0.440 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 4.622 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(8.202, 4.622, 12.000)
 = 4.622 

Use weld size
D1 = 9.00
D2 = 9.00

Weld Strength :
Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 9.00 * (4.62 + 4.62) = 77.22 kips