|
|
Summary Reports: | Job Standard Summary | Job Sample Calcs Report | B+Op Comparison Report Job Preferences Report | No Connections Summary | No Connections Detailed | No Connections Reference Map | |||||||||
Shear Plate Reports: | Specs | Strengths (Shear Only Connections) | Strengths (Shear & Axial Connections) | Welds | Doublers | |||||
Single Angle Reports: | Specs | Strengths (Shear & Axial) | Welds | Doublers | ||||||
Double Angle Reports: | Support Side Specs | Beam Side Specs | Strengths (Shear & Axial) | Welds | Doublers | |||||
End Plate Reports: | Specs | Strengths (Shear & Axial) | Welds | |||||||
Moment Reports: | Specs | Support Strengths | Support Reinforcement Strengths | Moment Plate Strengths | Welds | |||||
Moment Group Reports: | Doubler Plate Specs | Doubler Plate Welds | Stiffener / Moment Plate Specs | Stiffener / Moment Plate Welds |
Connection Number: |
bcw.s.s.00041.00748 |
Main Calcs: |
SHEAR PLATE CONNECTION SUMMARY Filler Beam profile: W16X26 Column profile: W14X61 Slope: 0 deg. Skew: 90 Vertical Offset: 0 Horizontal Offset: 0 Span: 12.3 ft. Reaction, V: 16 kips Shear Capacity, Rn: 18.1 kips Design/Reference according to AISC 14th Ed. - ASD Shear Plate: Extended Configuration Beam material grade: A992 Support material grade: A992 Plate material grade: A36 Weld grade: E70 Shear Plate Size: 8.500 in. x 11.500 in. x 0.375 in. Configuration Geometry: Welds at shear plate to support: 4/16 FILLET, 4/16 FILLET Bolt: 4 rows x 1 columns 0.75 in. Diameter A325N_TC bolts Vertical spacing: 3 in. Horizontal spacing: 3 in. Shear plate edge setback = 5.31 in. Beam centerline setback = 5.31 in. Edge distance at vertical edge of plate: 1.5 in. Edge distance at top edge of plate: 1.25 in. Edge distance at bottom edge of plate: 1.25 in. Edge distance at vertical edge of beam: 1.69 in. Horizontal distance to first hole: 7 in. Down distance from top of filler beam flange: 3 in. Holes in beam web: STD diameter = 0.812 in. Holes in shear plate: SSL diameter = 0.812 in., slot width = 1 in. |
Bolt Strength Calcs: |
BOLT STRENGTH BEAM SIDE: Bolt Strength: Using Instantaneous Center Of Rotation Method (AISC 7-1) ex = 7.000 in. Angle = 0.000 deg. C = 1.514 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 1.51 = 18.06 kips |
Bolt Bearing Calcs: |
BOLT BEARING AT BEAM SIDE: Vertical Shear Only Load Case: ICR cordinate relative to CG = (1.14, -0.00) At Row 1, At Column 1: Ri1 = 11.71 kips Ri vector at Beam = <11.35, 2.88> Lcsbm at Beam spacing = na Lcebm at Beam edge = 11.81 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.25/1) * 65.00 = na 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 11.81 * (0.25/1) * 65.00 = 115.12 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/1) * 65.00 = 14.62 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 115.12, 14.62) = 14.62 kips/bolt Ri vector at Shear Plate = <-11.35, -2.88> Lcsshpl at Shear Plate spacing = na Lceshpl at Shear Plate edge = 6.71 in. 1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na 1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.71 * 0.38 * 58.00 = 87.51 kips/bolt 1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 87.51, 19.57) = 19.57 kips/bolt 1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(14.625, 19.575) = 14.62 kips/bolt Bolt Shear Demand to Bearing ratio = 14.62 / 11.71 = 1.25 At Row 2, At Column 1: Ri1 = 10.17 kips Ri vector at Beam = <8.10, 6.16> Lcsbm at Beam spacing = na Lcebm at Beam edge = 9.51 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.25/1) * 65.00 = na 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 9.51 * (0.25/1) * 65.00 = 92.70 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/1) * 65.00 = 14.62 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 92.70, 14.62) = 14.62 kips/bolt Ri vector at Shear Plate = <-8.10, -6.16> Lcsshpl at Shear Plate spacing = na Lceshpl at Shear Plate edge = 8.16 in. 1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na 1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 8.16 * 0.38 * 58.00 = 106.55 kips/bolt 1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 106.55, 19.57) = 19.57 kips/bolt 1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(14.625, 19.575) = 14.62 kips/bolt Bolt Shear Demand to Bearing ratio = 14.62 / 10.17 = 1.44 At Row 3, At Column 1: Ri1 = 10.17 kips Ri vector at Beam = <-8.10, 6.16> Lcsbm at Beam spacing = na Lcebm at Beam edge = 1.71 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.25/1) * 65.00 = na 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.71 * (0.25/1) * 65.00 = 16.71 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/1) * 65.00 = 14.62 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 16.71, 14.62) = 14.62 kips/bolt Ri vector at Shear Plate = <8.10, -6.16> Lcsshpl at Shear Plate spacing = na Lceshpl at Shear Plate edge = 1.26 in. 1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na 1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.26 * 0.38 * 58.00 = 16.39 kips/bolt 1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 16.39, 19.57) = 16.39 kips/bolt 1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(14.625, 16.393) = 14.62 kips/bolt Bolt Shear Demand to Bearing ratio = 14.62 / 10.17 = 1.44 At Row 4, At Column 1: Ri1 = 11.71 kips Ri vector at Beam = <-11.35, 2.88> Lcsbm at Beam spacing = na Lcebm at Beam edge = 1.33 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.25/1) * 65.00 = na 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.33 * (0.25/1) * 65.00 = 13.01 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/1) * 65.00 = 14.62 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 13.01, 14.62) = 13.01 kips/bolt Ri vector at Shear Plate = <11.35, -2.88> Lcsshpl at Shear Plate spacing = na Lceshpl at Shear Plate edge = 1.03 in. 1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na 1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.03 * 0.38 * 58.00 = 13.46 kips/bolt 1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 13.46, 19.57) = 13.46 kips/bolt 1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(13.012, 13.462) = 13.01 kips/bolt Bolt Shear Demand to Bearing ratio = 13.01 / 11.71 = 1.11 Min Bolt Shear Demand to Bearing ratio for vertical shear only = min(1.0, 1.24919, 1.43793, 1.43793, 1.11143) = 1.00 Bearing Capacity at Beam and Shear Plate at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 18.06 = 18.06 kips |
Beam Strength Calcs: |
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 15.7 - 0 - 0 = 15.7 in. Gross Area (Shear) = [Web Depth] * tw = 15.70 * 0.25 = 3.92 in^2 Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw = (15.70 - (4 * 0.88)) * 0.25 = 3.05 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 3.92 = 78.50 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 3.05 = 59.47 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block Shear not required. |
Shear Plate Calcs: |
Gross Area = 0.38 * 11.50 = 4.31 in^2 Net Area = (11.50 - (4 *(0.81 + 1/16))) * 0.38 = 3.00 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 36.00 * 4.31 = 62.10 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 58.00 * 3.00 = 52.20 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (11.5 - 1.25) = 10.25 in. Net Shear Length = 10.2 - (3.5 * (0.812 + 0.0625)) = 7.19 in. Gross Tension Length = (0 + 1.5) = 1.50 in. Net Tension Length = 1.5 - (0.5 * (1 + 0.0625)) = 0.97 in. 1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) = 0.50 * 0.38 * ((0.60 * 58.00 * 7.19) + (1.00 * 58.00 * 0.97)) = 57.43 kips 2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) = 0.50 * 0.38 * ((0.60 * 36.00 * 10.25) + (1.00 * 58.00 * 0.97)) = 52.05 kips Block Shear = 52.05 kips Flexural and Buckling Strength: Eccentricity at first line of bolts, e = 7.00 in. Zgross = 12.40 in^3 Znet = 8.46 in^3 Sgross = 8.27 in^3 Snet = 5.70 in^3 Using Eq. 9-4 Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 8.46 / 7.00 = 35.05 kips Using Eq. 9-14 through 9-18, Fcr = Fy * Q tw = 0.38 in. ho = 11.50 in. c = 7.00 in. lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = = 11.50 * 36.00^0.5 / (10 * 0.38 * (475.00 + 280.00 * (11.50/7.00)^2 )^0.5) = 0.52 When lambda <= 0.70, Q=1 Q = 1.00 Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi Using Eq. 9-6 Buckling = Fcr * Sgross / e = 21.60 * 8.27 / 7.00 = 25.51 kips Interaction Check of Flexural Yielding, Per AISC 10-5: Eccentricity at CG of Bolt Group, e = 7.00 in. Zgross = 12.40 Znet = 8.46 Mr = Vr * e = 16.00 * 7.00 = 112.00 kips-in Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 36.00 * 12.40 = 267.81 kips-in Vr = 16.00 kips Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 36.00 * 4.31 = 62.10 kips Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0 (Vr/Vc)^2 + (Mr/Mc)^2 = (16.00 / 62.10)^2 + (112.00 / 267.81)^2 = 0.24 <= 1 (OK) Note: Mn <= 1.6My by inspection MAXIMUM PLATE THICKNESS: No of bolt columns = 1 tp < = db/2 + 1/16 = 0.375 <= 0.4375 OK tw < = db/2 + 1/16 = 0.25 <= 0.4375 OK Leh(plate) >= 2 * db = 1.5 >= 1.5 OK Leh(bm) >= 2 * db = 1.6875 >= 1.5 OK Maximum Plate Thickness is Not a Limiting Criteria. STABILIZER PLATE: Available Strength to Resist Lateral Displacement: Using Eq. 10-6 (14th Ed.): Rn/omega = 1500.00 * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 11.50 * 0.38^3 / 7.00^2 = 34.99 kips Stabilizer Plate Not Required for lateral displacement Torsional Strength: Using Eq. 10-8 and Eq. 10-7 (14th Ed.): Required, Mta or Mtu = Ra * (tw + tp) /2 = 16.00 * ((0.25 + 0.38) / 2) = 5.00 kips-in Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 = ((0.67 * 0.6 * 36.00) - (16.00 / (11.50 * 0.38))) * 0.5 * 11.50 * 0.38^2 = 8.64 kips-in Stabilizer Plate Not Required for torsional strength |
Weld Calcs: |
WELD: Weld Requirements: At shear only case: Weld Length for shear, Lv = 11.500 in. Shear Load per inch per weld, fv = R/Lv/2 = 16.000 / 11.500 / 2 = 0.696 kips/in/ weld theta = 0 deg. cPhi = 1.0 + 0.5 * sin(0)^1.5 = 1.000 Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856 Required weld size, Dv = fv/ (1/omega * coeff) = 0.696 / (0.500 * 1.856) = 0.750/16 Minimum fillet weld size : At shear only load case = 0.05 in. per Table J2.4 = 0.19 in. 5/8(tp) = 0.23 in. user preference = 0.25 in. Dmax1 (using eqn 9-3) = tshpl * Fushpl / ( Fexx * C1 * 0.088) = 0.375 * 58.000 / ( 70.000 * 1.000 * 0.088 ) = 3.515 Dmax2 (using eqn 9-3) = twsupport * Fusupport / ( Fexx * C1 * 0.088 ) = 0.375 * 65.000 / ( 70.000 * 1.000 * 0.088 ) = 3.940 Dmax3 = project max fillet weld = 12.000 Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.515, 3.940, 12.000) = 3.515 Use weld size D1 = 4.00 D2 = 4.00 Weld Strength : Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 11.50 * (3.52 + 3.52) = 75.04 kips |