Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
Session Title: Baseline
Session Date: 2018-08-31 18:06:55
Model Name: Josh_Demo_2000_Tons.db1
B+Op Status: B+Op was disabled
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report  |  B+Op Comparison Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed  |  No Connections Reference Map
 
Shear Plate Reports: Specs  Strengths (Shear Only Connections)  Strengths (Shear & Axial Connections)  Welds  Doublers
Single Angle Reports:  Specs  Strengths (Shear & Axial)  Welds  Doublers
Double Angle Reports:  Support Side Specs  Beam Side Specs  Strengths (Shear & Axial)  Welds  Doublers
End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds
Moment Reports:  Specs  Support Strengths  Support Reinforcement Strengths  Moment Plate Strengths  Welds
Moment Group Reports:  Doubler Plate Specs  Doubler Plate Welds  Stiffener / Moment Plate Specs  Stiffener / Moment Plate Welds

Connection Number:
bcw.s.s.00148.00565
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W12X16
Column profile: W14X311
Slope: 0 deg.
Skew: 90
Vertical Offset: 0
Horizontal Offset: 0
Span: 10 ft.
Reaction, V: 25 kips
Shear Capacity, Rn: 25.4 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A36
Weld grade: E70
Shear Plate Size: 17.000 in. x 8.500 in. x 1.000 in.
Configuration Geometry:
Welds at shear plate to support: 10/16 FILLET, 10/16 FILLET
Bolt: 3 rows x 3 columns 0.75 in. Diameter A325N_TC bolts
Vertical spacing: 3 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 7.94 in.
Beam centerline setback = 7.94 in.
Edge distance at vertical edge of plate: 1.5 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.56 in.
Horizontal distance to first hole: 9.5 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.812 in.
Holes in shear plate: SSL diameter = 0.812 in., slot width = 1 in.
Bolt Strength Calcs:
BOLT STRENGTH BEAM SIDE:

Bolt Strength:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 12.500 in.
Angle = 0.000 deg.
C = 2.129
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 2.13 = 25.39 kips
Bolt Bearing Calcs:
BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.16, -0.00)
At Row 1, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam   = <6.85, 9.50>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 3.29 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.22/1) * 65.00 = 26.73 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.29 * (0.22/1) * 65.00 = 28.25 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.22/1) * 65.00 = 12.87 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(26.73, 28.25, 12.87) = 12.87 kips/bolt
Ri vector at Shear Plate   = <-6.85, -9.50>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 8.44 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 1.00 * 58.00 = 106.13 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 8.44 * 1.00 * 58.00 = 293.60 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 1.00 * 58.00 = 52.20 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(106.13, 293.60, 52.20) = 52.20 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(12.870, 52.200) = 12.87 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.87 / 11.71 = 1.10

At Row 1, At Column 2:
Ri1 = 11.13 kips
Ri vector at Beam   = <10.38, 4.02>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 7.90 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.22/1) * 65.00 = 26.73 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 7.90 * (0.22/1) * 65.00 = 67.80 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.22/1) * 65.00 = 12.87 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(26.73, 67.80, 12.87) = 12.87 kips/bolt
Ri vector at Shear Plate   = <-10.38, -4.02>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 12.87 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 1.00 * 58.00 = 106.13 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.87 * 1.00 * 58.00 = 447.81 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 1.00 * 58.00 = 52.20 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(106.13, 447.81, 52.20) = 52.20 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(12.870, 52.200) = 12.87 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.87 / 11.13 = 1.16

At Row 1, At Column 3:
Ri1 = 11.28 kips
Ri vector at Beam   = <9.62, -5.89>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 16.82 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.22/1) * 65.00 = 26.73 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 16.82 * (0.22/1) * 65.00 = 144.32 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.22/1) * 65.00 = 12.87 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(26.73, 144.32, 12.87) = 12.87 kips/bolt
Ri vector at Shear Plate   = <-9.62, 5.89>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 1.81 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 1.00 * 58.00 = 106.13 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.81 * 1.00 * 58.00 = 62.85 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 1.00 * 58.00 = 52.20 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(106.13, 62.85, 52.20) = 52.20 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(12.870, 52.200) = 12.87 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.87 / 11.28 = 1.14

At Row 2, At Column 1:
Ri1 = 11.51 kips
Ri vector at Beam   = <0.00, 11.51>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 5.59 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.22/1) * 65.00 = 18.77 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.59 * (0.22/1) * 65.00 = 47.99 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.22/1) * 65.00 = 12.87 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(18.77, 47.99, 12.87) = 12.87 kips/bolt
Ri vector at Shear Plate   = <-0.00, -11.51>
Lcsshpl at Shear Plate spacing  = 2.19 in.
Lceshpl at Shear Plate edge    = 3.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 1.00 * 58.00 = 76.12 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.84 * 1.00 * 58.00 = 133.76 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 1.00 * 58.00 = 52.20 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(76.12, 133.76, 52.20) = 52.20 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(12.870, 52.200) = 12.87 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.87 / 11.51 = 1.12

At Row 2, At Column 2:
Ri1 = 8.47 kips
Ri vector at Beam   = <0.00, 8.47>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 5.59 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.22/1) * 65.00 = 18.77 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.59 * (0.22/1) * 65.00 = 47.99 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.22/1) * 65.00 = 12.87 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(18.77, 47.99, 12.87) = 12.87 kips/bolt
Ri vector at Shear Plate   = <-0.00, -8.47>
Lcsshpl at Shear Plate spacing  = 2.19 in.
Lceshpl at Shear Plate edge    = 3.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 1.00 * 58.00 = 76.12 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.84 * 1.00 * 58.00 = 133.76 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 1.00 * 58.00 = 52.20 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(76.12, 133.76, 52.20) = 52.20 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(12.870, 52.200) = 12.87 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.87 / 8.47 = 1.52

At Row 2, At Column 3:
Ri1 = 9.84 kips
Ri vector at Beam   = <0.00, -9.84>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 5.59 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.22/1) * 65.00 = 18.77 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.59 * (0.22/1) * 65.00 = 47.99 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.22/1) * 65.00 = 12.87 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(18.77, 47.99, 12.87) = 12.87 kips/bolt
Ri vector at Shear Plate   = <-0.00, 9.84>
Lcsshpl at Shear Plate spacing  = 2.19 in.
Lceshpl at Shear Plate edge    = 3.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 1.00 * 58.00 = 76.12 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.84 * 1.00 * 58.00 = 133.76 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 1.00 * 58.00 = 52.20 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(76.12, 133.76, 52.20) = 52.20 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(12.870, 52.200) = 12.87 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.87 / 9.84 = 1.31

At Row 3, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam   = <-6.85, 9.50>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 2.27 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.22/1) * 65.00 = 26.73 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.27 * (0.22/1) * 65.00 = 19.44 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.22/1) * 65.00 = 12.87 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(26.73, 19.44, 12.87) = 12.87 kips/bolt
Ri vector at Shear Plate   = <6.85, -9.50>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 1.04 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 1.00 * 58.00 = 106.13 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.04 * 1.00 * 58.00 = 36.20 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 1.00 * 58.00 = 52.20 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(106.13, 36.20, 52.20) = 36.20 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(12.870, 36.196) = 12.87 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.87 / 11.71 = 1.10

At Row 3, At Column 2:
Ri1 = 11.13 kips
Ri vector at Beam   = <-10.38, 4.02>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 4.49 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.22/1) * 65.00 = 26.73 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.49 * (0.22/1) * 65.00 = 38.49 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.22/1) * 65.00 = 12.87 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(26.73, 38.49, 12.87) = 12.87 kips/bolt
Ri vector at Shear Plate   = <10.38, -4.02>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 2.93 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 1.00 * 58.00 = 106.13 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.93 * 1.00 * 58.00 = 101.80 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 1.00 * 58.00 = 52.20 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(106.13, 101.80, 52.20) = 52.20 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(12.870, 52.200) = 12.87 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.87 / 11.13 = 1.16

At Row 3, At Column 3:
Ri1 = 11.28 kips
Ri vector at Beam   = <-9.61, -5.89>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 5.34 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.22/1) * 65.00 = 26.73 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.34 * (0.22/1) * 65.00 = 45.78 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.22/1) * 65.00 = 12.87 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(26.73, 45.78, 12.87) = 12.87 kips/bolt
Ri vector at Shear Plate   = <9.61, 5.89>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 1.17 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 1.00 * 58.00 = 106.13 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.17 * 1.00 * 58.00 = 40.81 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 1.00 * 58.00 = 52.20 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(106.13, 40.81, 52.20) = 40.81 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(12.870, 40.814) = 12.87 kips/bolt
Bolt Shear Demand to Bearing ratio = 12.87 / 11.28 = 1.14

Min Bolt Shear Demand to Bearing ratio for vertical shear only = min(1.0, 1.09928, 1.15652, 1.14132, 1.11854, 1.51896, 1.30843, 1.09929, 1.15654, 1.14133) = 1.00


Bearing Capacity at Beam and Shear Plate at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 25.39 = 25.39 kips
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 12 - 0 - 0 = 12 in.
Gross Area (Shear) = [Web Depth] * tw = 12.00 * 0.22 = 2.64 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (12.00 - (3 * 0.88)) * 0.22 = 2.06 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.64 = 52.80 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 2.06 = 40.22 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Shear Plate Calcs:
Gross Area = 1.00 * 8.50 = 8.50 in^2
Net Area = (8.50 - (3 *(0.81 + 1/16))) * 1.00 = 5.88 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 36.00 * 8.50 = 122.40 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 58.00 * 5.88 = 102.22 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (8.5 - 1.25) = 7.25 in.
Net Shear Length = 7.25 - (2.5 * (0.812 + 0.0625)) = 5.06 in.
Gross Tension Length = (6 + 1.5) = 7.50 in.
Net Tension Length = 7.5 - (2.5 * (1 + 0.0625)) = 4.84 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 58.00 * 5.06) + (0.50 * 58.00 * 4.84)) = 158.32 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 36.00 * 7.25) + (0.50 * 58.00 * 4.84)) = 148.53 kips
Block Shear = 148.53 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (8.5 - 1.25) = 14.50 in.
Net Shear Length = 2 * ( 7.25 - (2.5 * (0.812 + 0.0625)) ) = 10.12 in.
Gross Tension Length = (6 + 1.5) - 1.5 = 6.00 in.
Net Tension Length = 6 - 2 * (1 + 0.0625) = 3.88 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 58.00 * 10.12) + (0.50 * 58.00 * 3.88)) = 232.36 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 36.00 * 14.50) + (0.50 * 58.00 * 3.88)) = 212.79 kips
Block Shear = 212.79 kips

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.50 in.
Zgross = 18.06 in^3
Znet   = 12.62 in^3
Sgross = 12.04 in^3
Snet   = 8.34 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 12.62 / 9.50 = 38.53 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 1.00 in.
ho = 8.50 in.
c = 9.50 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 8.50 * 36.00^0.5 / (10 * 1.00 * (475.00 + 280.00 * (8.50/9.50)^2 )^0.5) = 0.19
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 21.60 * 12.04 / 9.50 = 27.38 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 12.50 in.
Zgross = 18.06
Znet = 12.62
Mr = Vr * e = 25.00 * 12.50 = 312.50 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 36.00 * 18.06 = 390.15 kips-in
Vr = 25.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 36.00 * 8.50 = 122.40 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (25.00 / 122.40)^2 + (312.50 / 390.15)^2 = 0.68 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
tmax = 6 * Mmax / (Fypl * d^2) Eq. 10-3
Mmax = (1/0.9) * Fv * Ab * C' Eq. 10-4
Mmax = (1/0.9) * 54 * 0.441786 * 28.0478 = 743.467 kips-in
tmax = 6 * 743.467 / (36 * 8.5^2) = 1.72 in.
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 8.50 * 1.00^3 / 9.50^2 = 266.30 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 25.00 * ((0.25 + 1.00) / 2) = 15.62 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 =  ((0.67 * 0.6 * 36.00) - (25.00 / (8.50 * 1.00))) * 0.5 * 8.50 * 1.00^2 = 48.70 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 8.500 in.
Shear Load per inch per weld, fv = R/Lv/2 = 25.000 / 8.500 / 2 = 1.471 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 1.471 / (0.500 * 1.856) = 1.585/16

Minimum fillet weld size : 
   At shear only load case = 0.10 in.
   per Table J2.4     = 0.31 in.
   5/8(tp)            = 0.62 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 1.000 * 58.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 9.374 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 1.410 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 14.813 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(9.374, 14.813, 12.000)
 = 9.374 

Use weld size
D1 = 10.00
D2 = 10.00

Weld Strength :
Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 8.50 * (9.37 + 9.37) = 147.90 kips