BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (3.53, 0.00)
At Row 1, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam = <7.58, 8.92>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 3.53 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.32/1) * 65.00 = na
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.53 * (0.32/1) * 65.00 = 43.37 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.32/1) * 65.00 = 18.43 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 43.37, 18.43) = 18.43 kips/bolt
Ri vector at Shear Plate = <-7.58, -8.92>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 4.10 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 4.10 * 0.38 * 58.00 = 53.51 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 53.51, 19.57) = 19.57 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(18.427, 19.575) = 18.43 kips/bolt
Bolt Shear Demand to Bearing ratio = 18.43 / 11.71 = 1.57
At Row 2, At Column 1:
Ri1 = 11.43 kips
Ri vector at Beam = <-0.00, 11.43>
Lcsbm at Beam spacing = 2.19 in.
Lcebm at Beam edge = 4.59 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.32/1) * 65.00 = 26.87 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.59 * (0.32/1) * 65.00 = 56.43 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.32/1) * 65.00 = 18.43 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(26.87, 56.43, 18.43) = 18.43 kips/bolt
Ri vector at Shear Plate = <0.00, -11.43>
Lcsshpl at Shear Plate spacing = 2.19 in.
Lceshpl at Shear Plate edge = 3.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.38 * 58.00 = 28.55 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.84 * 0.38 * 58.00 = 50.16 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(28.55, 50.16, 19.57) = 19.57 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(18.427, 19.575) = 18.43 kips/bolt
Bolt Shear Demand to Bearing ratio = 18.43 / 11.43 = 1.61
At Row 3, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam = <-7.58, 8.92>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 2.78 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.32/1) * 65.00 = na
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.78 * (0.32/1) * 65.00 = 34.14 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.32/1) * 65.00 = 18.43 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 34.14, 18.43) = 18.43 kips/bolt
Ri vector at Shear Plate = <7.58, -8.92>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 1.11 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.11 * 0.38 * 58.00 = 14.45 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 14.45, 19.57) = 14.45 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(18.427, 14.449) = 14.45 kips/bolt
Bolt Shear Demand to Bearing ratio = 14.45 / 11.71 = 1.23
Min Bolt Shear Demand to Bearing ratio for vertical shear only = min(1.0, 1.57398, 1.6125, 1.23417) = 1.00
Bearing Capacity at Beam and Shear Plate at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 29.27 = 29.27 kips |
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 17.9 - 1 - 1.25 = 15.65 in.
Gross Area (Shear) = [Web Depth] * tw = 15.65 * 0.32 = 4.93 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw
= (15.65 - (3 * 0.88)) * 0.32 = 4.10 in^2
Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 4.93 = 98.59 kips
Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 4.10 = 80.01 kips
Block Shear
Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block Shear (1)
Gross Shear Length = [edge dist. at beam edge] + ([# rows - 1] * [spacing]) = 2 + 6 = 8.00 in.
Net Shear Length = Gross Shear Length - (# rows - 0.5) * (hole size + 0.0625) = 8 - (3 - 0.5) * 0.875 = 5.81 in.
Gross Tension Length = [edge dist. at beam edge] + ([# cols - 1] * [spacing]) = 2.06 + (1 - 1) * 3 = 2.06 in.
Net Tension Length = Gross Tension Length - (# cols - 0.5) * (hole size + 0.0625) = 2.06 - (1 - 0.5) * 0.875 = 1.62 in.
1. (1/omega) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length]))
= 0.50 * 0.32 * ((0.60 * 65.00 * 5.81) + (1.00 * 65.00 * 1.62)) = 52.34 kips
2. (1/omega) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length]))
= 0.50 * 0.32 * ((0.60 * 50.00 * 8.00) + (1.00 * 65.00 * 1.62)) = 54.44 kips
Block Shear = 52.34 kips
Block Shear (1) Total = Block Shear (1) = 52.34 kips
Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section)
Eccentricity at Section, e = 3.93 in.
If beam is coped at both top and bottom flanges,
Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.32 in.
ho = 15.65 in.
c = 2.75 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 15.65 * 50.00^0.5 / (10 * 0.32 * (475.00 + 280.00 * (15.65/2.75)^2 )^0.5) = 0.36
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi
Snet1 (bolt holes not applicable) = 12.86 in^3
Snet2 (bolt holes applicable) = 12.86 in^3
Znet = 19.29 in^3
Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 30.00 * 12.86 / 3.93 = 98.19 kips
Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 12.86 / 3.93 = 98.19 kips
Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 19.29 / 3.93 = 159.56 kips
Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section)
Eccentricity at Section, e = 3.24 in.
If beam is coped at both top and bottom flanges,
Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.32 in.
ho = 15.65 in.
c = 2.75 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) =
= 15.65 * 50.00^0.5 / (10 * 0.32 * (475.00 + 280.00 * (15.65/2.75)^2 )^0.5) = 0.36
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi
Snet1 (bolt holes not applicable) = 12.86 in^3
Snet2 (bolt holes applicable) = 10.44 in^3
Znet = 16.41 in^3
Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 30.00 * 12.86 / 3.24 = 119.02 kips
Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 12.86 / 3.24 = 119.02 kips
Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 16.41 / 3.24 = 164.55 kips
Section Bending Strength Calculations Summary:
Coped Beam Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section)
Buckling : 98.19 >= 29.00 kips (OK)
Flexural Yielding : 98.19 >= 29.00 kips (OK)
Flexural Rupture : 159.56 >= 29.00 kips (OK)
Coped Beam Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section)
Buckling : 119.02 >= 29.00 kips (OK)
Flexural Yielding : 119.02 >= 29.00 kips (OK)
Flexural Rupture : 164.55 >= 29.00 kips (OK) |
WELD:
Weld Requirements:
At shear only case:
Weld Length for shear, Lv = 8.500 in.
Shear Load per inch per weld, fv = R/Lv/2 = 29.000 / 8.500 / 2 = 1.706 kips/in/ weld
theta = 0 deg.
cPhi = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 1.706 / (0.500 * 1.856) = 1.838/16
Minimum fillet weld size :
At shear only load case = 0.11 in.
per Table J2.4 = 0.19 in.
5/8(tp) = 0.23 in.
user preference = 0.25 in.
Dmax1 (using eqn 9-3)
= tshpl * Fushpl / ( Fexx * C1 * 0.088)
= 0.375 * 58.000 / ( 70.000 * 1.000 * 0.088 )
= 3.515
Dmax2 (using eqn 9-3)
= twsupport * Fusupport / ( Fexx * C1 * 0.088 )
= 0.360 * 65.000 / ( 70.000 * 1.000 * 0.088 )
= 3.782
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.515, 3.782, 12.000)
= 3.515
Dihedral Angle, DA = 74.00 deg.
Gap on Obtuse Angle Side = 0.10 in.
Use weld size
Acute Side D1 = 4.00
Obtuse Side D2 = 6.00
Weld Strength :
Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 8.50 * (3.52 + 3.52) = 55.46 kips
Check Effective Throat:
Acute Side Effect throat = (D1/sin(DA)) * cos(DA/2) = (0.25/ sin( 74.00)) * cos( 37.00) = 0.21 in.
Obtuse Side Effect throat = ((D2/sin(DA)-tshpl/tan(DA))*sin((180-(180-DA))/2))= ((0.38 / sin(74.00) -0.38 / tan(74.00)) * sin((180 - (180 - 74.00)) / 2)) = 0.17 in.
Total Effective Throat = 0.21 + 0.17 = 0.38 in.
Total Effective Throat of Square Case = D1 * 2^0.5 = 0.25 * 2^0.5 = 0.35 in.
0.35 in. <= 0.38 in. (OK) |