|
|
Summary Reports: | Job Standard Summary | Job Sample Calcs Report | B+Op Comparison Report Job Preferences Report | No Connections Summary | No Connections Detailed | No Connections Reference Map | |||||||||
Shear Plate Reports: | Specs | Strengths (Shear Only Connections) | Strengths (Shear & Axial Connections) | Welds | Doublers | |||||
Single Angle Reports: | Specs | Strengths (Shear & Axial) | Welds | Doublers | ||||||
Double Angle Reports: | Support Side Specs | Beam Side Specs | Strengths (Shear & Axial) | Welds | Doublers | |||||
End Plate Reports: | Specs | Strengths (Shear & Axial) | Welds | |||||||
Moment Reports: | Specs | Support Strengths | Support Reinforcement Strengths | Moment Plate Strengths | Welds | |||||
Moment Group Reports: | Doubler Plate Specs | Doubler Plate Welds | Stiffener / Moment Plate Specs | Stiffener / Moment Plate Welds |
Connection Number: |
bb.s.s.00014.00172 |
Main Calcs: |
SHEAR PLATE CONNECTION SUMMARY Filler Beam profile: W21X44 Support Girder profile: W21X83 Slope: 0 deg. Skew: 83 Vertical Offset: -0.75 Horizontal Offset: 7.39 Span: 36.9 ft. Reaction, V: 31 kips Shear Capacity, Rn: 42.3 kips Design/Reference according to AISC 14th Ed. - ASD Shear Plate: Conventional Configuration Beam material grade: A992 Support material grade: A992 Plate material grade: A36 Weld grade: E70 Shear Plate Size: 4.500 in. x 11.500 in. x 0.375 in. Configuration Geometry: Welds at shear plate to support: 4/16 FILLET, 5/16 FILLET Bolt: 4 rows x 1 columns 0.75 in. Diameter A325N_TC bolts Vertical spacing: 3 in. Horizontal spacing: 3 in. Shear plate edge setback = 1 in. Beam centerline setback = 1.07 in. Edge distance at vertical edge of plate: 1.5 in. Edge distance at top edge of plate: 1.25 in. Edge distance at bottom edge of plate: 1.25 in. Edge distance at vertical edge of beam: 2 in. Edge distance at top edge of beam: 2 in. Edge distance at bottom edge of beam: 7.2 in. Top cope depth: 1 in. Top cope length: 3.5 in. Bottom cope depth: 1.5 in. Bottom cope length: 3.5 in. Horizontal distance to first hole: 3 in. Down distance from top of filler beam flange: 3 in. Holes in beam web: STD diameter = 0.812 in. Holes in shear plate: SSL diameter = 0.812 in., slot width = 1 in. |
Bolt Strength Calcs: |
BOLT STRENGTH BEAM SIDE: Bolt Strength: Using Instantaneous Center Of Rotation Method (AISC 7-1) ex = 1.523 in. Angle = 0.000 deg. C = 3.546 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 3.55 = 42.30 kips |
Bolt Bearing Calcs: |
BOLT BEARING AT BEAM SIDE: Vertical Shear Only Load Case: ICR cordinate relative to CG = (6.97, -0.00) At Row 1, At Column 1: Ri1 = 11.71 kips Ri vector at Beam = <6.35, 9.84> Lcsbm at Beam spacing = na Lcebm at Beam edge = 1.97 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.35/1) * 65.00 = na 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.97 * (0.35/1) * 65.00 = 26.94 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.35/1) * 65.00 = 20.47 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 26.94, 20.47) = 20.47 kips/bolt Ri vector at Shear Plate = <-6.35, -9.84> Lcsshpl at Shear Plate spacing = na Lceshpl at Shear Plate edge = 5.05 in. 1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na 1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 5.05 * 0.38 * 58.00 = 65.90 kips/bolt 1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 65.90, 19.57) = 19.57 kips/bolt 1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(20.475, 19.575) = 19.57 kips/bolt Bolt Shear Demand to Bearing ratio = 19.57 / 11.71 = 1.67 At Row 2, At Column 1: Ri1 = 11.57 kips Ri vector at Beam = <2.43, 11.31> Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 4.71 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.35/1) * 65.00 = 29.86 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.71 * (0.35/1) * 65.00 = 64.27 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.35/1) * 65.00 = 20.47 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(29.86, 64.27, 20.47) = 20.47 kips/bolt Ri vector at Shear Plate = <-2.43, -11.31> Lcsshpl at Shear Plate spacing = 2.19 in. Lceshpl at Shear Plate edge = 7.00 in. 1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.38 * 58.00 = 28.55 kips/bolt 1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 7.00 * 0.38 * 58.00 = 91.35 kips/bolt 1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(28.55, 91.35, 19.57) = 19.57 kips/bolt 1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(20.475, 19.575) = 19.57 kips/bolt Bolt Shear Demand to Bearing ratio = 19.57 / 11.57 = 1.69 At Row 3, At Column 1: Ri1 = 11.57 kips Ri vector at Beam = <-2.43, 11.31> Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 7.78 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.35/1) * 65.00 = 29.86 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 7.78 * (0.35/1) * 65.00 = 106.15 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.35/1) * 65.00 = 20.47 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(29.86, 106.15, 20.47) = 20.47 kips/bolt Ri vector at Shear Plate = <2.43, -11.31> Lcsshpl at Shear Plate spacing = 2.19 in. Lceshpl at Shear Plate edge = 3.93 in. 1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.38 * 58.00 = 28.55 kips/bolt 1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.93 * 0.38 * 58.00 = 51.31 kips/bolt 1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(28.55, 51.31, 19.57) = 19.57 kips/bolt 1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(20.475, 19.575) = 19.57 kips/bolt Bolt Shear Demand to Bearing ratio = 19.57 / 11.57 = 1.69 At Row 4, At Column 1: Ri1 = 11.71 kips Ri vector at Beam = <-6.35, 9.84> Lcsbm at Beam spacing = na Lcebm at Beam edge = 3.28 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.35/1) * 65.00 = na 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.28 * (0.35/1) * 65.00 = 44.81 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.35/1) * 65.00 = 20.47 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 44.81, 20.47) = 20.47 kips/bolt Ri vector at Shear Plate = <6.35, -9.84> Lcsshpl at Shear Plate spacing = na Lceshpl at Shear Plate edge = 1.00 in. 1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na 1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.00 * 0.38 * 58.00 = 13.10 kips/bolt 1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 13.10, 19.57) = 13.10 kips/bolt 1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(20.475, 13.104) = 13.10 kips/bolt Bolt Shear Demand to Bearing ratio = 13.10 / 11.71 = 1.12 Min Bolt Shear Demand to Bearing ratio for vertical shear only = min(1.0, 1.67199, 1.69176, 1.69176, 1.11926) = 1.00 Bearing Capacity at Beam and Shear Plate at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 42.30 = 42.30 kips |
Beam Strength Calcs: |
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 20.7 - 1 - 1.5 = 18.2 in. Gross Area (Shear) = [Web Depth] * tw = 18.20 * 0.35 = 6.37 in^2 Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw = (18.20 - (4 * 0.88)) * 0.35 = 5.14 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 6.37 = 127.40 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 5.14 = 100.33 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block Shear (1) Gross Shear Length = [edge dist. at beam edge] + ([# rows - 1] * [spacing]) = 2 + 9 = 11.00 in. Net Shear Length = Gross Shear Length - (# rows - 0.5) * (hole size + 0.0625) = 11 - (4 - 0.5) * 0.875 = 7.94 in. Gross Tension Length = [edge dist. at beam edge] + ([# cols - 1] * [spacing]) = 2 + (1 - 1) * 3 = 2.00 in. Net Tension Length = Gross Tension Length - (# cols - 0.5) * (hole size + 0.0625) = 2 - (1 - 0.5) * 0.875 = 1.56 in. 1. (1/omega) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length])) = 0.50 * 0.35 * ((0.60 * 65.00 * 7.94) + (1.00 * 65.00 * 1.56)) = 71.95 kips 2. (1/omega) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length])) = 0.50 * 0.35 * ((0.60 * 50.00 * 11.00) + (1.00 * 65.00 * 1.56)) = 75.52 kips Block Shear = 71.95 kips Block Shear (1) Total = Block Shear (1) = 71.95 kips Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section) Eccentricity at Section, e = 4.78 in. If beam is coped at both top and bottom flanges, Using Eq. 9-14 through 9-18, Fcr = Fy * Q tw = 0.35 in. ho = 18.20 in. c = 3.50 in. lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = = 18.20 * 50.00^0.5 / (10 * 0.35 * (475.00 + 280.00 * (18.20/3.50)^2 )^0.5) = 0.41 When lambda <= 0.70, Q=1 Q = 1.00 Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi Snet1 (bolt holes not applicable) = 19.32 in^3 Snet2 (bolt holes applicable) = 19.32 in^3 Znet = 28.98 in^3 Using Eq. 9-6 Buckling = Fcr * Snet1 / e = 30.00 * 19.32 / 4.78 = 121.21 kips Using Eq. 9-19 Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 19.32 / 4.78 = 121.21 kips Using Eq. 9-4 Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 28.98 / 4.78 = 196.96 kips Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section) Eccentricity at Section, e = 3.28 in. If beam is coped at both top and bottom flanges, Using Eq. 9-14 through 9-18, Fcr = Fy * Q tw = 0.35 in. ho = 18.20 in. c = 3.50 in. lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = = 18.20 * 50.00^0.5 / (10 * 0.35 * (475.00 + 280.00 * (18.20/3.50)^2 )^0.5) = 0.41 When lambda <= 0.70, Q=1 Q = 1.00 Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi Snet1 (bolt holes not applicable) = 19.32 in^3 Snet2 (bolt holes applicable) = 15.61 in^3 Znet = 24.37 in^3 Using Eq. 9-6 Buckling = Fcr * Snet1 / e = 30.00 * 19.32 / 3.28 = 176.60 kips Using Eq. 9-19 Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 19.32 / 3.28 = 176.60 kips Using Eq. 9-4 Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 24.37 / 3.28 = 241.26 kips Section Bending Strength Calculations Summary: Coped Beam Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section) Buckling : 121.21 >= 31.00 kips (OK) Flexural Yielding : 121.21 >= 31.00 kips (OK) Flexural Rupture : 196.96 >= 31.00 kips (OK) Coped Beam Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section) Buckling : 176.60 >= 31.00 kips (OK) Flexural Yielding : 176.60 >= 31.00 kips (OK) Flexural Rupture : 241.26 >= 31.00 kips (OK) |
Shear Plate Calcs: |
Gross Area = 0.38 * 11.50 = 4.31 in^2 Net Area = (11.50 - (4 *(0.81 + 1/16))) * 0.38 = 3.00 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 36.00 * 4.31 = 62.10 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 58.00 * 3.00 = 52.20 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (11.5 - 1.25) = 10.25 in. Net Shear Length = 10.2 - (3.5 * (0.812 + 0.0625)) = 7.19 in. Gross Tension Length = (0 + 1.5) = 1.50 in. Net Tension Length = 1.5 - (0.5 * (1 + 0.0625)) = 0.97 in. 1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) = 0.50 * 0.38 * ((0.60 * 58.00 * 7.19) + (1.00 * 58.00 * 0.97)) = 57.43 kips 2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) = 0.50 * 0.38 * ((0.60 * 36.00 * 10.25) + (1.00 * 58.00 * 0.97)) = 52.05 kips Block Shear = 52.05 kips Interaction Check of Flexural Yielding, Per AISC 10-5: Eccentricity due to Conventional Config. (e = a/2), e = 1.52 in. Zgross = 12.40 Znet = 8.46 Mr = Vr * e = 31.00 * 1.52 = 47.21 kips-in Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 36.00 * 12.40 = 267.81 kips-in Vr = 31.00 kips Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 36.00 * 4.31 = 62.10 kips Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0 (Vr/Vc)^2 + (Mr/Mc)^2 = (31.00 / 62.10)^2 + (47.21 / 267.81)^2 = 0.28 <= 1 (OK) Note: Mn <= 1.6My by inspection MAXIMUM PLATE THICKNESS: No of columns = 1 Distance cl top to cl bot bolts <= 12" (Equivalent depth of n = 1 to 5 at 3", AISC Table 10-9) Slot shape = SSL tmax = Unlimited Maximum Plate Thickness is Not a Limiting Criteria. |
Weld Calcs: |
WELD: Weld Requirements: At shear only case: Weld Length for shear, Lv = 11.500 in. Shear Load per inch per weld, fv = R/Lv/2 = 31.000 / 11.500 / 2 = 1.348 kips/in/ weld theta = 0 deg. cPhi = 1.0 + 0.5 * sin(0)^1.5 = 1.000 Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856 Required weld size, Dv = fv/ (1/omega * coeff) = 1.348 / (0.500 * 1.856) = 1.452/16 Minimum fillet weld size : At shear only load case = 0.09 in. per Table J2.4 = 0.19 in. 5/8(tp) = 0.23 in. user preference = 0.25 in. Dmax1 (using eqn 9-3) = tshpl * Fushpl / ( Fexx * C1 * 0.088) = 0.375 * 58.000 / ( 70.000 * 1.000 * 0.088 ) = 3.515 Dmax2 (using eqn 9-3) = twsupport * Fusupport / ( Fexx * C1 * 0.088 ) = 0.515 * 65.000 / ( 70.000 * 1.000 * 0.088 ) = 5.410 Dmax3 = project max fillet weld = 12.000 Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.515, 5.410, 12.000) = 3.515 Dihedral Angle, DA = 83.00 deg. Gap on Obtuse Angle Side = 0.05 in. Use weld size Acute Side D1 = 4.00 Obtuse Side D2 = 5.00 Weld Strength : Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 11.50 * (3.52 + 3.52) = 75.04 kips Check Effective Throat: Acute Side Effect throat = (D1/sin(DA)) * cos(DA/2) = (0.25/ sin( 83.00)) * cos( 41.50) = 0.19 in. Obtuse Side Effect throat = ((D2/sin(DA)-tshpl/tan(DA))*sin((180-(180-DA))/2))= ((0.31 / sin(83.00) -0.38 / tan(83.00)) * sin((180 - (180 - 83.00)) / 2)) = 0.14 in. Total Effective Throat = 0.19 + 0.14 = 0.37 in. Total Effective Throat of Square Case = D1 * 2^0.5 = 0.25 * 2^0.5 = 0.35 in. 0.35 in. <= 0.37 in. (OK) |