Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
Session Title: Baseline
Session Date: 2018-08-31 18:06:55
Model Name: Josh_Demo_2000_Tons.db1
B+Op Status: B+Op was disabled
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report  |  B+Op Comparison Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed  |  No Connections Reference Map
 
Shear Plate Reports: Specs  Strengths (Shear Only Connections)  Strengths (Shear & Axial Connections)  Welds  Doublers
Single Angle Reports:  Specs  Strengths (Shear & Axial)  Welds  Doublers
Double Angle Reports:  Support Side Specs  Beam Side Specs  Strengths (Shear & Axial)  Welds  Doublers
End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds
Moment Reports:  Specs  Support Strengths  Support Reinforcement Strengths  Moment Plate Strengths  Welds
Moment Group Reports:  Doubler Plate Specs  Doubler Plate Welds  Stiffener / Moment Plate Specs  Stiffener / Moment Plate Welds

Connection Number:
bb.2bb.s.00166.00585
 
Main Calcs:
DOUBLE ANGLES Bolted to Beam, Bolted to Support CONNECTION SUMMARY

Girder profile: W16X26
Filler Beam profile: W12X16
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: -3.75
Horizontal Offset: 3.34
Span: 23.98 ft.
Reaction, V: 8.37 kips
Shear Capacity, Rn: 24.82 kips
Design/Reference according to AISC 14th Ed. - ASD
Beam material grade: A992
Support material grade: A992
Angle material grade: A36
Angle1 Profile: L6X6X1
       Length = 5.500 in.
       Beam side bolts: 2 rows x 1 column 1 in. Diameter A325N bolts
       Beam side bolt vertical spacing: 3 in.
       Support side bolts: 2 rows x 1 column 1 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3 in.
Angle2 Profile: L8X6X1
       Length = 5.500 in.
       Beam side bolts: 2 rows x 1 column 1 in. Diameter A325N bolts
       Beam side bolt vertical spacing: 3 in.
       Support side bolts: 2 rows x 1 column 1 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3 in.

Configuration Geometry:

Beam setback = 0.5 in.
Edge distance at vertical edge of beam: 2.25 in.
Edge distance at bottom edge of beam: 5.5 in.
Bottom cope depth: 1 in.
Bottom cope length: 2.75 in.

Horizontal distance to first hole: 2.75 in.

Bolted Angle Leg At Beam : 
Angle 1 Leg Distances : 
   Down distance from top of filler beam flange : 2.5 in.
   Edge distance at vertical edge : 3.25 in.
   Edge distance at top edge : 1.25 in.
   Edge distance at bottom edge : 1.25 in.

Angle 2 Leg Distances : 
   Down distance from top of filler beam flange : 2.5 in.
   Edge distance at vertical edge : 3.25 in.
   Edge distance at top edge : 1.25 in.
   Edge distance at bottom edge : 1.25 in.

Bolted Angle Leg At Support : 
Angle 1 Leg Distances : 
   Down distance from top of filler beam flange : 2.5 in.
   Gage at Bolt : 3.25 in.
   Edge distance at vertical edge : 2.86 in.
   Edge distance at top edge : 1.25 in.
   Edge distance at bottom edge : 1.25 in.

Angle 2 Leg Distances : 
   Down distance from top of filler beam flange : 2.5 in.
   Gage at Bolt : 6.59 in.
   Edge distance at vertical edge : 1.52 in.
   Edge distance at top edge : 1.25 in.
   Edge distance at bottom edge : 1.25 in.

Holes in Beam Web : STD diameter = 1.0625 in.
Holes in Beam Angle Leg : STD diameter = 1.0625 in.
Holes in Support Girder : STD diameter = 1.0625 in.
Holes in Support Angle Leg : SSL slot width = 1.0625 in., slot length = 1.3125 in.
Bolt Strength Calcs:
BOLT STRENGTH SUPPORT SIDE:

Angle 1 Bolt Strength (at Shear Load Only):
Gage ratio:  gage1 ratio = gage2 / (gage1 + gage2) = 6.59 / (3.25 + 6.59) = 0.67
Required tension stress (frt) = gage1 ratio * axial reaction    / shared bolt row count / bolt area  = 0.670 * 0.000 / 2 / 0.785 = 0.000 ksi
Required shear stress   (frv) = gage1 ratio * vertical reaction / bolt row count  / bolt area  = 0.67 * 8.37 / 2 / 0.79 = 3.57 ksi
C = no of bolts = 2.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 21.21 * 2.00 = 42.41 kips

Angle 1 Bolt Shear Strength Subtotal = 42.41 kips

Angle 2 Bolt Strength (at Shear Load Only):
Gage ratio:  gage2 ratio = gage1 / (gage1 + gage2) = 3.25 / (3.25 + 6.59) = 0.33
Required tension stress (frt) = gage2 ratio * axial reaction    / shared bolt row count / bolt area  = 0.330 * 0.000 / 2 / 0.785 = 0.000 ksi
Required shear stress   (frv) = gage2 ratio * vertical reaction / bolt row count  / bolt area  = 0.33 * 8.37 / 2 / 0.79 = 1.76 ksi
C = no of bolts = 2.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 21.21 * 2.00 = 42.41 kips

Angle 2 Bolt Shear Strength Subtotal = 42.41 kips


Total Support Side Bolt Shear Strength = min( Angle1 Bolt Shear/Gage1 Ratio , Angle2 Bolt Shear/Gage2 Ratio ) = min (63.33, 128.41) = 63.33 kips


BOLT STRENGTH BEAM SIDE:

At ShearPlane 1(Angle 1):
Bolt Strength:
C = no of bolts = 2.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 21.21 * 2.00 = 42.41 kips


At ShearPlane 2(Angle 2):
Bolt Strength:
C = no of bolts = 2.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 21.21 * 2.00 = 42.41 kips


Total Vertical Bolt Shear Strength = 
Min(ShearPlane 1 Shear Load Only / gage1 ratio, 
ShearPlane 2 Shear Load Only / gage2 ratio) = 
Min(42.41 / 0.67, 42.41 / 0.33) = 63.33 kips
Bolt Bearing Calcs:
BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
At ShearPlane 1
At Row 1, At Column 1:
Ri1 = 21.21 kips
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 1.97 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.22/2) * 65.00 = 8.31 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.97 * (0.22/2) * 65.00 = 8.45 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.22/2) * 65.00 = 8.58 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.31, 8.45, 8.58) = 8.31 kips/bolt
Lcsang1 at Angle 1 spacing  = 1.94 in.
Lceang1 at Angle 1 edge    = 3.72 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.72 * 1.00 * 58.00 = 129.41 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(67.42, 129.41, 69.60) = 67.42 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(21.21, 8.312, 67.425) = 8.31 kips/bolt


At Row 2, At Column 1:
Ri1 = 21.21 kips
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 4.97 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.22/2) * 65.00 = 8.31 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.97 * (0.22/2) * 65.00 = 21.32 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.22/2) * 65.00 = 8.58 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.31, 21.32, 8.58) = 8.31 kips/bolt
Lcsang1 at Angle 1 spacing  = 1.94 in.
Lceang1 at Angle 1 edge    = 0.72 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.72 * 1.00 * 58.00 = 25.01 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(67.42, 25.01, 69.60) = 25.01 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(21.21, 8.312, 25.012) = 8.31 kips/bolt


Bearing Capacity at Shear Plane 1 = Sum{ Bearing At [(Row)i,(Column)i] } = 
8.312 + 8.312 = 16.62 kips

At ShearPlane 2
At Row 1, At Column 1:
Ri2 = 21.21 kips
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 1.97 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.22/2) * 65.00 = 8.31 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.97 * (0.22/2) * 65.00 = 8.45 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.22/2) * 65.00 = 8.58 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.31, 8.45, 8.58) = 8.31 kips/bolt
Lcsang2 at Angle 2 spacing  = 1.94 in.
Lceang2 at Angle 2 edge    = 3.72 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.72 * 1.00 * 58.00 = 129.41 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(67.42, 129.41, 69.60) = 67.42 kips/bolt
1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(21.21, 8.312, 67.425) = 8.31 kips/bolt


At Row 2, At Column 1:
Ri2 = 21.21 kips
Lcsbm at Beam spacing  = 1.94 in.
Lcebm at Beam edge    = 4.97 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.22/2) * 65.00 = 8.31 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.97 * (0.22/2) * 65.00 = 21.32 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.22/2) * 65.00 = 8.58 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.31, 21.32, 8.58) = 8.31 kips/bolt
Lcsang2 at Angle 2 spacing  = 1.94 in.
Lceang2 at Angle 2 edge    = 0.72 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.72 * 1.00 * 58.00 = 25.01 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(67.42, 25.01, 69.60) = 25.01 kips/bolt
1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(21.21, 8.312, 25.012) = 8.31 kips/bolt


Bearing Capacity at Shear Plane 2 = Sum{ Bearing At [(Row)i,(Column)i] } = 
8.312 + 8.312 = 16.62 kips


BEARING AT BEAM SIDE SUMMARY:

Bearing Capacity at Beam and Double Angles at Vertical Shear Load Only, Rbv1 =
Min(Sum{ Bearing At Shear Plane 1  [(Row)i,(Column)i] } / Gage1 Ratio, 
    Sum{ Bearing At Shear Plane 2  [(Row)i,(Column)i] } / Gage2 Ratio ) = Min( 16.62/ 0.67, 16.62/ 0.33 ) = 24.82 kips

BOLT BEARING AT SUPPORT SIDE:
Angle 1, Vertical Shear Loading: 
At Row 1, At Column 1:
Ri1 = 21.21 kips
Lcssupp at Support spacing  = 1.94 in.
Lcesupp at Support edge    = 8.92 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.94 * (0.25/2) * 65.00 = 9.45 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 8.92 * (0.25/2) * 65.00 = 43.48 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 1.00 * (0.25/2) * 65.00 = 9.75 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(9.45, 43.48, 9.75) = 9.45 kips/bolt
Lcsang1 at Angle 1 spacing  = 1.94 in.
Lceang1 at Angle 1 edge    = 0.72 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.72 * 1.00 * 58.00 = 25.01 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(67.42, 25.01, 69.60) = 25.01 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(21.21, 9.445, 25.012) = 9.45 kips/bolt


At Row 2, At Column 1:
Ri1 = 21.21 kips
Lcssupp at Support spacing  = 1.94 in.
Lcesupp at Support edge    = 5.92 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.94 * (0.25/2) * 65.00 = 9.45 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 5.92 * (0.25/2) * 65.00 = 28.85 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 1.00 * (0.25/2) * 65.00 = 9.75 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(9.45, 28.85, 9.75) = 9.45 kips/bolt
Lcsang1 at Angle 1 spacing  = 1.94 in.
Lceang1 at Angle 1 edge    = 3.72 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.72 * 1.00 * 58.00 = 129.41 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(67.42, 129.41, 69.60) = 67.42 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(21.21, 9.445, 67.425) = 9.45 kips/bolt


Bearing Capacity at Shear Plane  = Sum{ Bearing At [(Row)i,(Column)i] } = 
9.445 + 9.445 = 18.89 kips


BOLT BEARING AT SUPPORT SIDE:
Angle 2, Vertical Shear Loading: 
At Row 1, At Column 1:
Ri1 = 21.21 kips
Lcssupp at Support spacing  = 1.94 in.
Lcesupp at Support edge    = 8.92 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.94 * (0.25/2) * 65.00 = 9.45 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 8.92 * (0.25/2) * 65.00 = 43.48 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 1.00 * (0.25/2) * 65.00 = 9.75 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(9.45, 43.48, 9.75) = 9.45 kips/bolt
Lcsang2 at Angle 2 spacing  = 1.94 in.
Lceang2 at Angle 2 edge    = 0.72 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.72 * 1.00 * 58.00 = 25.01 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(67.42, 25.01, 69.60) = 25.01 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(21.21, 9.445, 25.012) = 9.45 kips/bolt


At Row 2, At Column 1:
Ri1 = 21.21 kips
Lcssupp at Support spacing  = 1.94 in.
Lcesupp at Support edge    = 5.92 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.94 * (0.25/2) * 65.00 = 9.45 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 5.92 * (0.25/2) * 65.00 = 28.85 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 1.00 * (0.25/2) * 65.00 = 9.75 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(9.45, 28.85, 9.75) = 9.45 kips/bolt
Lcsang2 at Angle 2 spacing  = 1.94 in.
Lceang2 at Angle 2 edge    = 3.72 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.72 * 1.00 * 58.00 = 129.41 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(67.42, 129.41, 69.60) = 67.42 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(21.21, 9.445, 67.425) = 9.45 kips/bolt


Bearing Capacity at Shear Plane  = Sum{ Bearing At [(Row)i,(Column)i] } = 
9.445 + 9.445 = 18.89 kips


Bearing At Support Side Summary:
Bearing Capacity = min(At Angle1 Shear Only/Gage1 Ratio, At Angle2 Shear Only/Gage2 Ratio) = min(18.89/0.67, 18.89/0.33) = 28.21 kips
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 12 - 0 - 1 = 11 in.
Gross Area (Shear) = [Web Depth] * tw = 11.00 * 0.22 = 2.42 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (11.00 - (2 * 1.12)) * 0.22 = 1.93 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.42 = 48.40 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.93 = 37.54 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.


Flexure at Longest Cope (Bottom Cope Only at Section)
Eccentricity at Section, e = 3.38 in.
Fy = 50.00 ksi
Snet1 (bolt holes not applicable) = 6.34 in^3
Snet2 (bolt holes applicable) = 6.16 in^3
Znet = 10.14 in^3

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 6.34 / 3.38 = 56.31 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 10.14 / 3.38 = 97.65 kips


Flexure at Furthest Bolt Line within Cope (Bottom Cope Only at Section)
Eccentricity at Section, e = 2.88 in.
Fy = 50.00 ksi
Snet1 (bolt holes not applicable) = 6.34 in^3
Snet2 (bolt holes applicable) = 6.16 in^3
Znet = 10.14 in^3

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 6.34 / 2.88 = 66.11 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 10.14 / 2.88 = 114.63 kips


Section Bending Strength Calculations Summary:

   Coped Beam Flexure at Longest Cope (Bottom Cope Only at Section)
   Flexural Yielding : 56.31 >= 8.37 kips (OK)
   Flexural Rupture : 97.65 >= 8.37 kips (OK)

   Coped Beam Flexure at Furthest Bolt Line within Cope (Bottom Cope Only at Section)
   Flexural Yielding : 66.11 >= 8.37 kips (OK)
   Flexural Rupture : 114.63 >= 8.37 kips (OK)
Double Angles Bolted Bolted Calcs:
Angle1 

Support Angle Leg 


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (5.5 - 1.25) = 4.25 in.
Net Shear Length = 4.25 - (1.5 * (1.06 + 1/16)) = 2.56 in.
Gross Tension Length = [edge dist.] = 2.86 in.
Net Tension Length = (2.86 - (1.31 + 1/16)/2) = 2.17 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 58.00 * 2.56) + (1.00 * 58.00 * 2.17)) = 107.59 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 36.00 * 4.25) + (1.00 * 58.00 * 2.17)) = 108.90 kips
Block Shear = 107.59 kips

Gross Area = 1.00 * 5.50 = 5.50 in^2
Net Area = (5.50 - (2 *(1.06 + 1/16)) * 1.00 = 3.25 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 5.50 = 79.20 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 3.25 = 56.55 kips


Rotational Ductility Check
Using Eq. 9-37
Minimum bolt diameter = 0.16*tf*sqrt(Fy/b * (b^2/L^2 + 2)) = 0.16*1.00*sqrt(36.00/1.64 * (1.64^2/5.50^2 + 2)) = 1.10 in.
Bolt diameter required = min(minimum bolt diameter, 0.69*sqrt(ts)) = min(1.10, 0.98) = 0.98 in.


Beam Angle Leg 

Gross Area = 1.00 * 5.50 = 5.50 in^2
Net Area = (5.50 - (2 *(1.06 + 1/16)) * 1.00 = 3.25 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 5.50 = 79.20 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 3.25 = 56.55 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (5.5 - 1.25) = 4.25 in.
Net Shear Length = 4.25 - (1.5 * (1.06 + 1/16) = 2.56 in.
Gross Tension Length = [edge dist.] = 3.25 in.
Net Tension Length = (3.25 - (1.06 + 1/16)/2) = 2.69 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 58.00 * 2.56) + (1.00 * 58.00 * 2.69)) = 122.53 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 36.00 * 4.25) + (1.00 * 58.00 * 2.69)) = 123.84 kips
Block Shear = 122.53 kips



Angle2 

Support Angle Leg 


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (5.5 - 1.25) = 4.25 in.
Net Shear Length = 4.25 - (1.5 * (1.06 + 1/16)) = 2.56 in.
Gross Tension Length = [edge dist.] = 1.52 in.
Net Tension Length = (1.52 - (1.31 + 1/16)/2) = 0.83 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 58.00 * 2.56) + (1.00 * 58.00 * 0.83)) = 68.73 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 36.00 * 4.25) + (1.00 * 58.00 * 0.83)) = 70.04 kips
Block Shear = 68.73 kips

Gross Area = 1.00 * 5.50 = 5.50 in^2
Net Area = (5.50 - (2 *(1.06 + 1/16)) * 1.00 = 3.25 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 5.50 = 79.20 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 3.25 = 56.55 kips


Rotational Ductility Check
Using Eq. 9-37
Minimum bolt diameter = 0.16*tf*sqrt(Fy/b * (b^2/L^2 + 2)) = 0.16*1.00*sqrt(36.00/4.98 * (4.98^2/5.50^2 + 2)) = 0.74 in.
Bolt diameter required = min(minimum bolt diameter, 0.69*sqrt(ts)) = min(0.74, 0.98) = 0.74 in.


Beam Angle Leg 

Gross Area = 1.00 * 5.50 = 5.50 in^2
Net Area = (5.50 - (2 *(1.06 + 1/16)) * 1.00 = 3.25 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 5.50 = 79.20 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 3.25 = 56.55 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (5.5 - 1.25) = 4.25 in.
Net Shear Length = 4.25 - (1.5 * (1.06 + 1/16) = 2.56 in.
Gross Tension Length = [edge dist.] = 3.25 in.
Net Tension Length = (3.25 - (1.06 + 1/16)/2) = 2.69 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 58.00 * 2.56) + (1.00 * 58.00 * 2.69)) = 122.53 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 1.00 * ((0.60 * 36.00 * 4.25) + (1.00 * 58.00 * 2.69)) = 123.84 kips
Block Shear = 122.53 kips



Total Support Side Shear Yielding Capacity =  min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) =  min(118.259 , 239.793) = 118.259 kips
Total Support Side Shear Rupture Capacity =  min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(84.4388 , 171.216) = 84.4388 kips
Total Support Side Vertical Block Shear Capacity =  min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(160.65 , 208.093) = 160.65 kips
Total Beam Side Shear Yielding Capacity =  min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(118.259 , 239.793) = 118.259 kips
Total Beam Side Shear Rupture Capacity =  min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(84.4388 , 171.216) = 84.4388 kips
Total Beam Side Vertical Block Shear Capacity =  min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(182.951 , 370.968) = 182.951 kips
Weld Calcs:
(Not applicable / No results )