SHEAR PLATE CONNECTION SUMMARY
Filler Beam profile: W12X14
Column profile: W14X74
Slope: 0 deg.
Skew: 83
Vertical Offset: 0
Horizontal Offset: 0
Span: 14.2 ft.
Reaction, V: 12 kips
Shear Capacity, Rn: 16.4 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Conventional Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A36
Weld grade: E70
Shear Plate Size: 4.500 in. x 5.500 in. x 0.375 in.
Configuration Geometry:
Welds at shear plate to support: 4/16 FILLET, 5/16 FILLET
Bolt: 2 rows x 1 columns 0.75 in. Diameter A325N_TC bolts
Vertical spacing: 3 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 1 in.
Beam centerline setback = 1.06 in.
Edge distance at vertical edge of plate: 1.5 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 2 in.
Horizontal distance to first hole: 3 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.812 in.
Holes in shear plate: SSL diameter = 0.812 in., slot width = 1 in. |
BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.48, -0.00)
At Row 1, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam = <8.34, 8.21>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 3.87 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.20/1) * 65.00 = na
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.87 * (0.20/1) * 65.00 = 30.18 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 30.18, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate = <-8.34, -8.21>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 3.63 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.63 * 0.38 * 58.00 = 47.39 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 47.39, 19.57) = 19.57 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 19.575) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 11.71 = 1.00
At Row 2, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam = <-8.34, 8.21>
Lcsbm at Beam spacing = na
Lcebm at Beam edge = 2.40 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * na * (0.20/1) * 65.00 = na
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.40 * (0.20/1) * 65.00 = 18.73 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(na, 18.73, 11.70) = 11.70 kips/bolt
Ri vector at Shear Plate = <8.34, -8.21>
Lcsshpl at Shear Plate spacing = na
Lceshpl at Shear Plate edge = 1.20 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * na * 0.38 * 58.00 = na
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.20 * 0.38 * 58.00 = 15.69 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.38 * 58.00 = 19.57 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(na, 15.69, 19.57) = 15.69 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(11.700, 15.693) = 11.70 kips/bolt
Bolt Shear Demand to Bearing ratio = 11.70 / 11.71 = 1.00
Min Bolt Shear Demand to Bearing ratio for vertical shear only = min(1.0, 0.999349, 0.999349) = 1.00
Bearing Capacity at Beam and Shear Plate at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 16.43 = 16.42 kips |
Gross Area = 0.38 * 5.50 = 2.06 in^2
Net Area = (5.50 - (2 *(0.81 + 1/16))) * 0.38 = 1.41 in^2
Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 36.00 * 2.06 = 29.70 kips
Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 58.00 * 1.41 = 24.47 kips
Block Shear
Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear):
Gross Shear Length = (5.5 - 1.25) = 4.25 in.
Net Shear Length = 4.25 - (1.5 * (0.812 + 0.0625)) = 2.94 in.
Gross Tension Length = (0 + 1.5) = 1.50 in.
Net Tension Length = 1.5 - (0.5 * (1 + 0.0625)) = 0.97 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length]))
= 0.50 * 0.38 * ((0.60 * 58.00 * 2.94) + (1.00 * 58.00 * 0.97)) = 29.70 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length]))
= 0.50 * 0.38 * ((0.60 * 36.00 * 4.25) + (1.00 * 58.00 * 0.97)) = 27.75 kips
Block Shear = 27.75 kips
Interaction Check of Flexural Yielding, Per AISC 10-5:
Eccentricity due to Conventional Config. (e = a/2), e = 1.52 in.
Zgross = 2.84
Znet = 1.85
Mr = Vr * e = 12.00 * 1.52 = 18.28 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 36.00 * 2.84 = 61.26 kips-in
Vr = 12.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 36.00 * 2.06 = 29.70 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (12.00 / 29.70)^2 + (18.28 / 61.26)^2 = 0.25 <= 1 (OK)
Note: Mn <= 1.6My by inspection
MAXIMUM PLATE THICKNESS:
No of columns = 1
Distance cl top to cl bot bolts <= 12" (Equivalent depth of n = 1 to 5 at 3", AISC Table 10-9)
Slot shape = SSL
tmax = Unlimited
Maximum Plate Thickness is Not a Limiting Criteria. |
WELD:
Weld Requirements:
At shear only case:
Weld Length for shear, Lv = 5.500 in.
Shear Load per inch per weld, fv = R/Lv/2 = 12.000 / 5.500 / 2 = 1.091 kips/in/ weld
theta = 0 deg.
cPhi = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 1.091 / (0.500 * 1.856) = 1.175/16
Minimum fillet weld size :
At shear only load case = 0.07 in.
per Table J2.4 = 0.19 in.
5/8(tp) = 0.23 in.
user preference = 0.25 in.
Dmax1 (using eqn 9-3)
= tshpl * Fushpl / ( Fexx * C1 * 0.088)
= 0.375 * 58.000 / ( 70.000 * 1.000 * 0.088 )
= 3.515
Dmax2 (using eqn 9-2)
= tfsupport * Fusupport / ( Fexx * C1 * 0.044 )
= 0.785 * 65.000 / ( 70.000 * 1.000 * 0.044 )
= 16.494
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(3.515, 16.494, 12.000)
= 3.515
Dihedral Angle, DA = 83.00 deg.
Gap on Obtuse Angle Side = 0.05 in.
Use weld size
Acute Side D1 = 4.00
Obtuse Side D2 = 5.00
Weld Strength :
Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 5.50 * (3.52 + 3.52) = 35.89 kips
Check Effective Throat:
Acute Side Effect throat = (D1/sin(DA)) * cos(DA/2) = (0.25/ sin( 83.00)) * cos( 41.50) = 0.19 in.
Obtuse Side Effect throat = ((D2/sin(DA)-tshpl/tan(DA))*sin((180-(180-DA))/2))= ((0.31 / sin(83.00) -0.38 / tan(83.00)) * sin((180 - (180 - 83.00)) / 2)) = 0.14 in.
Total Effective Throat = 0.19 + 0.14 = 0.37 in.
Total Effective Throat of Square Case = D1 * 2^0.5 = 0.25 * 2^0.5 = 0.35 in.
0.35 in. <= 0.37 in. (OK) |