Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
Session Title: Baseline
Session Date: 2018-08-31 18:06:55
Model Name: Josh_Demo_2000_Tons.db1
B+Op Status: B+Op was disabled
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report  |  B+Op Comparison Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed  |  No Connections Reference Map
 
Shear Plate Reports: Specs  Strengths (Shear Only Connections)  Strengths (Shear & Axial Connections)  Welds  Doublers
Single Angle Reports:  Specs  Strengths (Shear & Axial)  Welds  Doublers
Double Angle Reports:  Support Side Specs  Beam Side Specs  Strengths (Shear & Axial)  Welds  Doublers
End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds
Moment Reports:  Specs  Support Strengths  Support Reinforcement Strengths  Moment Plate Strengths  Welds
Moment Group Reports:  Doubler Plate Specs  Doubler Plate Welds  Stiffener / Moment Plate Specs  Stiffener / Moment Plate Welds

Connection Number:
bb.2bb.s.00178.00597
 
Main Calcs:
DOUBLE ANGLES Bolted to Beam, Bolted to Support CONNECTION SUMMARY

Girder profile: W14X22
Filler Beam profile: W16X26
Slope: 0.90 deg.
Support Slope: -0.01 deg.
Skew: 90.00
Vertical Offset: 1.91
Horizontal Offset: 0.00
Span: 11.62 ft.
Reaction, V: 37.97 kips
Shear Capacity, Rn: 41.19 kips
Design/Reference according to AISC 14th Ed. - ASD
Beam material grade: A992
Support material grade: A992
Angle material grade: A36
Angle1 Profile: L5X3-1/2X5/16
       Length = 11.000 in.
       Beam side bolts: 4 rows x 1 column 0.75 in. Diameter A325N bolts
       Beam side bolt vertical spacing: 3 in.
       Support side bolts: 4 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3 in.
Angle2 Profile: L5X3-1/2X5/16
       Length = 11.000 in.
       Beam side bolts: 4 rows x 1 column 0.75 in. Diameter A325N bolts
       Beam side bolt vertical spacing: 3 in.
       Support side bolts: 4 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3 in.

Configuration Geometry:

Beam setback = 0.5 in.
Edge distance at vertical edge of beam at top bolt: 1.73 in.
Edge distance at vertical edge of beam at bottom bolt: 1.59 in.
Edge distance at top edge of beam: 1.5 in.
Edge distance at bottom edge of beam: 1.5 in.
Top cope depth: 2.75 in.
Top cope length: 2.5 in.
Bottom cope depth: 1 in.
Bottom cope length: 2.25 in.

Horizontal distance to first hole: 2.25 in.

Bolted Angle Leg At Beam : 
Angle 1 Leg Distances : 
   Down distance from top of filler beam flange : 4.25 in.
   Edge distance at vertical edge : 1.25 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Angle 2 Leg Distances : 
   Down distance from top of filler beam flange : 4.25 in.
   Edge distance at vertical edge : 1.25 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Bolted Angle Leg At Support : 
Angle 1 Leg Distances : 
   Down distance from top of filler beam flange : 4.22 in.
   Gage at Bolt : 3.25 in.
   Edge distance at vertical edge : 1.88 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Angle 2 Leg Distances : 
   Down distance from top of filler beam flange : 4.22 in.
   Gage at Bolt : 3.25 in.
   Edge distance at vertical edge : 1.88 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Holes in Beam Web : STD diameter = 0.8125 in.
Holes in Beam Angle Leg : STD diameter = 0.8125 in.
Holes in Support Girder : STD diameter = 0.8125 in.
Holes in Support Angle Leg : SSL slot width = 0.8125 in., slot length = 1 in.
Bolt Strength Calcs:
BOLT STRENGTH SUPPORT SIDE:

Angle 1 Bolt Strength (at Shear Load Only):
Gage ratio:  gage1 ratio = gage2 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.5
Required tension stress (frt) = gage1 ratio * axial reaction    / bolt row count / bolt area  = 0.500 * 0.000 / 4 / 0.442 = 0.000 ksi
Required shear stress   (frv) = gage1 ratio * vertical reaction / bolt row count  / bolt area  = 0.50 * 37.97 / 4 / 0.44 = 10.74 ksi
C = no of bolts = 4.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 4.00 = 47.71 kips

Angle 1 Bolt Shear Strength Subtotal = 47.71 kips

Angle 2 Bolt Strength (at Shear Load Only):
Gage ratio:  gage2 ratio = gage1 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.5
Required tension stress (frt) = gage2 ratio * axial reaction    / bolt row count / bolt area  = 0.500 * 0.000 / 4 / 0.442 = 0.000 ksi
Required shear stress   (frv) = gage2 ratio * vertical reaction / bolt row count  / bolt area  = 0.50 * 37.97 / 4 / 0.44 = 10.74 ksi
C = no of bolts = 4.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 4.00 = 47.71 kips

Angle 2 Bolt Shear Strength Subtotal = 47.71 kips


Total Support Side Bolt Shear Strength = min( Angle1 Bolt Shear/Gage1 Ratio , Angle2 Bolt Shear/Gage2 Ratio ) = min (95.43, 95.43) = 95.43 kips


BOLT STRENGTH BEAM SIDE:

At ShearPlane 1(Angle 1):
Bolt Strength:
C = no of bolts = 4.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 4.00 = 47.71 kips


At ShearPlane 2(Angle 2):
Bolt Strength:
C = no of bolts = 4.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 4.00 = 47.71 kips


Total Vertical Bolt Shear Strength = 
Min(ShearPlane 1 Shear Load Only / gage1 ratio, 
ShearPlane 2 Shear Load Only / gage2 ratio) = 
Min(47.71 / 0.5, 47.71 / 0.5) = 95.43 kips
Bolt Bearing Calcs:
BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
At ShearPlane 1
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 1.09 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.25/2) * 65.00 = 10.66 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.09 * (0.25/2) * 65.00 = 5.33 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/2) * 65.00 = 7.31 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(10.66, 5.33, 7.31) = 5.33 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 9.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.59 * 0.31 * 58.00 = 104.50 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 104.50, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 5.333, 16.339) = 5.33 kips/bolt


At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 4.09 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.25/2) * 65.00 = 10.66 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.09 * (0.25/2) * 65.00 = 19.96 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/2) * 65.00 = 7.31 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(10.66, 19.96, 7.31) = 7.31 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 6.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.59 * 0.31 * 58.00 = 71.82 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 71.82, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 7.312, 16.339) = 7.31 kips/bolt


At Row 3, At Column 1:
Ri1 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 7.09 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.25/2) * 65.00 = 10.66 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 7.09 * (0.25/2) * 65.00 = 34.58 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/2) * 65.00 = 7.31 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(10.66, 34.58, 7.31) = 7.31 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 3.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 7.312, 16.339) = 7.31 kips/bolt


At Row 4, At Column 1:
Ri1 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 10.09 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.25/2) * 65.00 = 10.66 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 10.09 * (0.25/2) * 65.00 = 49.21 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/2) * 65.00 = 7.31 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(10.66, 49.21, 7.31) = 7.31 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 0.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 7.312, 6.467) = 6.47 kips/bolt


Bearing Capacity at Shear Plane 1 = Sum{ Bearing At [(Row)i,(Column)i] } = 
5.333 + 7.312 + 7.312 + 6.467 = 26.43 kips

At ShearPlane 2
At Row 1, At Column 1:
Ri2 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 1.09 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.25/2) * 65.00 = 10.66 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.09 * (0.25/2) * 65.00 = 5.33 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/2) * 65.00 = 7.31 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(10.66, 5.33, 7.31) = 5.33 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 9.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.59 * 0.31 * 58.00 = 104.50 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 104.50, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 5.333, 16.339) = 5.33 kips/bolt


At Row 2, At Column 1:
Ri2 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 4.09 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.25/2) * 65.00 = 10.66 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.09 * (0.25/2) * 65.00 = 19.96 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/2) * 65.00 = 7.31 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(10.66, 19.96, 7.31) = 7.31 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 6.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.59 * 0.31 * 58.00 = 71.82 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 71.82, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 7.312, 16.339) = 7.31 kips/bolt


At Row 3, At Column 1:
Ri2 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 7.09 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.25/2) * 65.00 = 10.66 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 7.09 * (0.25/2) * 65.00 = 34.58 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/2) * 65.00 = 7.31 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(10.66, 34.58, 7.31) = 7.31 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 3.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 7.312, 16.339) = 7.31 kips/bolt


At Row 4, At Column 1:
Ri2 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 10.09 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.25/2) * 65.00 = 10.66 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 10.09 * (0.25/2) * 65.00 = 49.21 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.25/2) * 65.00 = 7.31 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(10.66, 49.21, 7.31) = 7.31 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 0.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 7.312, 6.467) = 6.47 kips/bolt


Bearing Capacity at Shear Plane 2 = Sum{ Bearing At [(Row)i,(Column)i] } = 
5.333 + 7.312 + 7.312 + 6.467 = 26.43 kips


BEARING AT BEAM SIDE SUMMARY:

Bearing Capacity at Beam and Double Angles at Vertical Shear Load Only, Rbv1 =
Min(Sum{ Bearing At Shear Plane 1  [(Row)i,(Column)i] } / Gage1 Ratio, 
    Sum{ Bearing At Shear Plane 2  [(Row)i,(Column)i] } / Gage2 Ratio ) = Min( 26.43/ 0.50, 26.43/ 0.50 ) = 52.85 kips

BOLT BEARING AT SUPPORT SIDE:
Angle 1, Vertical Shear Loading: 
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 10.99 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.23/1) * 65.00 = 19.62 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 10.99 * (0.23/1) * 65.00 = 98.57 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.23/1) * 65.00 = 13.46 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(19.62, 98.57, 13.46) = 13.46 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 0.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 13.455, 6.467) = 6.47 kips/bolt


At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 7.99 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.23/1) * 65.00 = 19.62 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 7.99 * (0.23/1) * 65.00 = 71.66 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.23/1) * 65.00 = 13.46 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(19.62, 71.66, 13.46) = 13.46 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 3.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 13.455, 16.339) = 11.93 kips/bolt


At Row 3, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 4.99 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.23/1) * 65.00 = 19.62 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 4.99 * (0.23/1) * 65.00 = 44.75 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.23/1) * 65.00 = 13.46 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(19.62, 44.75, 13.46) = 13.46 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 6.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.59 * 0.31 * 58.00 = 71.82 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 71.82, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 13.455, 16.339) = 11.93 kips/bolt


At Row 4, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 1.99 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.23/1) * 65.00 = 19.62 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.99 * (0.23/1) * 65.00 = 17.84 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.23/1) * 65.00 = 13.46 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(19.62, 17.84, 13.46) = 13.46 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 9.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.59 * 0.31 * 58.00 = 104.50 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 104.50, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 13.455, 16.339) = 11.93 kips/bolt


Bearing Capacity at Shear Plane  = Sum{ Bearing At [(Row)i,(Column)i] } = 
6.467 + 11.928 + 11.928 + 11.928 = 42.25 kips


BOLT BEARING AT SUPPORT SIDE:
Angle 2, Vertical Shear Loading: 
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 10.99 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.23/1) * 65.00 = 19.62 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 10.99 * (0.23/1) * 65.00 = 98.56 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.23/1) * 65.00 = 13.46 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(19.62, 98.56, 13.46) = 13.46 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 0.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 13.455, 6.467) = 6.47 kips/bolt


At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 7.99 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.23/1) * 65.00 = 19.62 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 7.99 * (0.23/1) * 65.00 = 71.65 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.23/1) * 65.00 = 13.46 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(19.62, 71.65, 13.46) = 13.46 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 3.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 13.455, 16.339) = 11.93 kips/bolt


At Row 3, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 4.99 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.23/1) * 65.00 = 19.62 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 4.99 * (0.23/1) * 65.00 = 44.74 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.23/1) * 65.00 = 13.46 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(19.62, 44.74, 13.46) = 13.46 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 6.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.59 * 0.31 * 58.00 = 71.82 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 71.82, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 13.455, 16.339) = 11.93 kips/bolt


At Row 4, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 1.99 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.23/1) * 65.00 = 19.62 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.99 * (0.23/1) * 65.00 = 17.83 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.23/1) * 65.00 = 13.46 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(19.62, 17.83, 13.46) = 13.46 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 9.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 9.59 * 0.31 * 58.00 = 104.50 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 104.50, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 13.455, 16.339) = 11.93 kips/bolt


Bearing Capacity at Shear Plane  = Sum{ Bearing At [(Row)i,(Column)i] } = 
6.467 + 11.928 + 11.928 + 11.928 = 42.25 kips


Bearing At Support Side Summary:
Bearing Capacity = min(At Angle1 Shear Only/Gage1 Ratio, At Angle2 Shear Only/Gage2 Ratio) = min(42.25/0.50, 42.25/0.50) = 84.50 kips
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 15.7 - 2.75 - 1 = 11.95 in.
Gross Area (Shear) = [Web Depth] * tw = 11.95 * 0.25 = 2.99 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (11.95 - (4 * 0.88)) * 0.25 = 2.11 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.99 = 59.75 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 2.11 = 41.19 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block Shear (1)
Gross Shear Length = [edge dist. at beam edge] + ([# rows - 1] * [spacing]) = 1.5 + 9 = 10.50 in.
Net Shear Length = Gross Shear Length - (# rows - 0.5) * (hole size + 0.0625) = 10.5 - (4 - 0.5) * 0.875 = 7.44 in.
Gross Tension Length = [edge dist. at beam edge] + ([# cols - 1] * [spacing]) = 1.59 + (1 - 1) * 3 = 1.59 in.
Net Tension Length = Gross Tension Length - (# cols - 0.5) * (hole size + 0.0625) = 1.59 - (1 - 0.5) * 0.875 = 1.15 in.
1. (1/omega) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length])) 
    = 0.50 * 0.25 * ((0.60 * 65.00 * 7.44) + (1.00 * 65.00 * 1.15)) = 45.58 kips
2. (1/omega) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length])) 
    = 0.50 * 0.25 * ((0.60 * 50.00 * 10.50) + (1.00 * 65.00 * 1.15)) = 48.70 kips
Block Shear = 45.58 kips

Block Shear (1) Total = Block Shear (1) = 45.58 kips


Buckling and Flexure at Longest Cope (Top Cope Only at Section)
Eccentricity at Section, e = 3.12 in.
If coped at top/bottom flange only and c <= 2d and dc <= d/2, use Eq. 9-7, Fcr = 26210.00 * f * k * (tw/h1)^2 <= Fy

Using Eq. 9-7 through 9-11
tw = 0.25 in.
h1 = 8.74 in.
c = 2.50 in.
When c/h1<=1.0, k=2.2(h1/c)^1.65
k  = 2.20 * (8.74 / 2.50)^1.65 = 17.34
When c/d<=1.0, f=2c/d
f = 2 * (2.50 / 15.70) = 0.32
Fy = 50.00 ksi
Fcr = (1/omega) * 26210.00 * f * k * (tw/h1)^2 = 0.60 * 26210.00 * 0.32 * 17.34 * (0.25 / 8.74)^2 = 71.11 ksi
Fcrmin =1/omega * min(Fcr, Fy) = 30.00 ksi
Snet1 (bolt holes not applicable) = 10.46 in^3
Snet2 (bolt holes applicable) = 10.46 in^3
Znet = 18.62 in^3

Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 30.00 * 10.46 / 3.12 = 100.76 kips

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 10.46 / 3.12 = 100.76 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 18.62 / 3.12 = 194.23 kips


Buckling and Flexure at Short Cope (Top and Bottom Cope at Section)
Eccentricity at Section, e = 2.87 in.
If beam is coped at both top and bottom flanges,

Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.25 in.
ho = 11.95 in.
c = 2.50 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 11.95 * 50.00^0.5 / (10 * 0.25 * (475.00 + 280.00 * (11.95/2.50)^2 )^0.5) = 0.41
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi
Snet1 (bolt holes not applicable) = 5.95 in^3
Snet2 (bolt holes applicable) = 5.95 in^3
Znet = 8.93 in^3

Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 30.00 * 5.95 / 2.87 = 62.30 kips

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 5.95 / 2.87 = 62.30 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 8.93 / 2.87 = 101.25 kips


Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section)
Eccentricity at Section, e = 2.34 in.
If beam is coped at both top and bottom flanges,

Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.25 in.
ho = 11.95 in.
c = 2.50 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 11.95 * 50.00^0.5 / (10 * 0.25 * (475.00 + 280.00 * (11.95/2.50)^2 )^0.5) = 0.41
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi
Snet1 (bolt holes not applicable) = 5.95 in^3
Snet2 (bolt holes applicable) = 4.29 in^3
Znet = 6.30 in^3

Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 30.00 * 5.95 / 2.34 = 76.23 kips

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 5.95 / 2.34 = 76.23 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 6.30 / 2.34 = 87.44 kips


Section Bending Strength Calculations Summary:

   Coped Beam Buckling and Flexure at Longest Cope (Top Cope Only at Section)
   Buckling : 100.76 >= 37.97 kips (OK)
   Flexural Yielding : 100.76 >= 37.97 kips (OK)
   Flexural Rupture : 194.23 >= 37.97 kips (OK)

   Coped Beam Buckling and Flexure at Short Cope (Top and Bottom Cope at Section)
   Buckling : 62.30 >= 37.97 kips (OK)
   Flexural Yielding : 62.30 >= 37.97 kips (OK)
   Flexural Rupture : 101.25 >= 37.97 kips (OK)

   Coped Beam Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section)
   Buckling : 76.23 >= 37.97 kips (OK)
   Flexural Yielding : 76.23 >= 37.97 kips (OK)
   Flexural Rupture : 87.44 >= 37.97 kips (OK)
Double Angles Bolted Bolted Calcs:
Angle1 

Support Angle Leg 


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (11 - 1) = 10.00 in.
Net Shear Length = 10 - (3.5 * (0.812 + 1/16)) = 6.94 in.
Gross Tension Length = [edge dist.] = 1.88 in.
Net Tension Length = (1.88 - (1 + 1/16)/2) = 1.34 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 6.94) + (1.00 * 58.00 * 1.34)) = 49.98 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 10.00) + (1.00 * 58.00 * 1.34)) = 46.00 kips
Block Shear = 46.00 kips

Gross Area = 0.31 * 11.00 = 3.44 in^2
Net Area = (11.00 - (4 *(0.81 + 1/16)) * 0.31 = 2.35 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 3.44 = 49.58 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 2.35 = 40.85 kips


Beam Angle Leg 

Gross Area = 0.31 * 11.00 = 3.44 in^2
Net Area = (11.00 - (4 *(0.81 + 1/16)) * 0.31 = 2.35 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 3.44 = 49.58 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 2.35 = 40.85 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (11 - 1) = 10.00 in.
Net Shear Length = 10 - (3.5 * (0.812 + 1/16) = 6.94 in.
Gross Tension Length = [edge dist.] = 1.25 in.
Net Tension Length = (1.25 - (0.812 + 1/16)/2) = 0.81 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 6.94) + (1.00 * 58.00 * 0.81)) = 45.16 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 10.00) + (1.00 * 58.00 * 0.81)) = 41.18 kips
Block Shear = 41.18 kips



Angle2 

Support Angle Leg 


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (11 - 1) = 10.00 in.
Net Shear Length = 10 - (3.5 * (0.812 + 1/16)) = 6.94 in.
Gross Tension Length = [edge dist.] = 1.88 in.
Net Tension Length = (1.88 - (1 + 1/16)/2) = 1.34 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 6.94) + (1.00 * 58.00 * 1.34)) = 49.98 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 10.00) + (1.00 * 58.00 * 1.34)) = 46.00 kips
Block Shear = 46.00 kips

Gross Area = 0.31 * 11.00 = 3.44 in^2
Net Area = (11.00 - (4 *(0.81 + 1/16)) * 0.31 = 2.35 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 3.44 = 49.58 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 2.35 = 40.85 kips


Beam Angle Leg 

Gross Area = 0.31 * 11.00 = 3.44 in^2
Net Area = (11.00 - (4 *(0.81 + 1/16)) * 0.31 = 2.35 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 3.44 = 49.58 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 2.35 = 40.85 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (11 - 1) = 10.00 in.
Net Shear Length = 10 - (3.5 * (0.812 + 1/16) = 6.94 in.
Gross Tension Length = [edge dist.] = 1.25 in.
Net Tension Length = (1.25 - (0.812 + 1/16)/2) = 0.81 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 6.94) + (1.00 * 58.00 * 0.81)) = 45.16 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 10.00) + (1.00 * 58.00 * 0.81)) = 41.18 kips
Block Shear = 41.18 kips



Total Support Side Shear Yielding Capacity =  min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) =  min(99.1584 , 99.1584) = 99.1584 kips
Total Support Side Shear Rupture Capacity =  min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(81.693 , 81.693) = 81.693 kips
Total Support Side Vertical Block Shear Capacity =  min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(92.0024 , 92.0024) = 92.0024 kips
Total Beam Side Shear Yielding Capacity =  min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(99.1584 , 99.1584) = 99.1584 kips
Total Beam Side Shear Rupture Capacity =  min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(81.693 , 81.693) = 81.693 kips
Total Beam Side Vertical Block Shear Capacity =  min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(82.3581 , 82.3581) = 82.3581 kips
Weld Calcs:
(Not applicable / No results )