|
|
Summary Reports: | Job Standard Summary | Job Sample Calcs Report | B+Op Connection Comparison Report | Standard Connection Cost Report Job Preferences Report | No Connections Summary | No Connections Detailed | No Connections Reference Map | |||||||||
Shear and Axial Reports: | Shear Plate: | Specs | Strengths (Shear Only Connections) | Welds | Doublers | Connection Cost Report | ||||
Strengths (Shear & Axial Connections) | ||||||||||
Single Angle: | Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
Double Angle Reports: | Support Side Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
Beam Side Specs | ||||||||||
End Plate Reports: | Specs | Strengths (Shear & Axial) | Welds | Connection Cost Report | ||||||
Moment Reports: | Specs | Support Strengths | Beam Flange Welds | Connection Cost Report | ||||||
Moment Plates: | Specs | Strengths | Welds | |||||||
Column Stiffeners: | Specs | Strengths | Welds | |||||||
Column Web Doublers: | Specs | Strengths | Welds | |||||||
Shear Plate: | Specs | Strengths | Welds | |||||||
Double Angle: | Support Side Specs | Strengths | Welds | |||||||
Beam Side Specs | ||||||||||
Connection Number: |
bb.2bb.s.00166.00585 |
Main Calcs: |
DOUBLE ANGLES Bolted to Beam, Bolted to Support CONNECTION SUMMARY Girder profile: W16X26 Filler Beam profile: W12X16 Slope: 0.00 deg. Skew: 90.00 Vertical Offset: -3.75 Horizontal Offset: 3.34 Span: 23.98 ft. Reaction, V: 8.37 kips Shear Capacity, Rn: 24.82 kips Design/Reference according to AISC 14th Ed. - ASD Beam material grade: A992 Support material grade: A992 Angle material grade: A36 Angle1 Profile: L6X6X1 Length = 5.500 in. Beam side bolts: 2 rows x 1 column 1 in. Diameter A325N bolts Beam side bolt vertical spacing: 3 in. Support side bolts: 2 rows x 1 column 1 in. Diameter A325N_TC bolts Support side bolt vertical spacing: 3 in. Angle2 Profile: L8X6X1 Length = 5.500 in. Beam side bolts: 2 rows x 1 column 1 in. Diameter A325N bolts Beam side bolt vertical spacing: 3 in. Support side bolts: 2 rows x 1 column 1 in. Diameter A325N_TC bolts Support side bolt vertical spacing: 3 in. Configuration Geometry: Beam setback = 0.5 in. Edge distance at vertical edge of beam: 2.25 in. Edge distance at bottom edge of beam: 5.5 in. Bottom cope depth: 1 in. Bottom cope length: 2.75 in. Horizontal distance to first hole: 2.75 in. Bolted Angle Leg At Beam : Angle 1 Leg Distances : Down distance from top of filler beam flange : 2.5 in. Edge distance at vertical edge : 3.25 in. Edge distance at top edge : 1.25 in. Edge distance at bottom edge : 1.25 in. Angle 2 Leg Distances : Down distance from top of filler beam flange : 2.5 in. Edge distance at vertical edge : 3.25 in. Edge distance at top edge : 1.25 in. Edge distance at bottom edge : 1.25 in. Bolted Angle Leg At Support : Angle 1 Leg Distances : Down distance from top of filler beam flange : 2.5 in. Gage at Bolt : 3.25 in. Edge distance at vertical edge : 2.86 in. Edge distance at top edge : 1.25 in. Edge distance at bottom edge : 1.25 in. Angle 2 Leg Distances : Down distance from top of filler beam flange : 2.5 in. Gage at Bolt : 6.59 in. Edge distance at vertical edge : 1.52 in. Edge distance at top edge : 1.25 in. Edge distance at bottom edge : 1.25 in. Holes in Beam Web : STD diameter = 1.0625 in. Holes in Beam Angle Leg : STD diameter = 1.0625 in. Holes in Support Girder : STD diameter = 1.0625 in. Holes in Support Angle Leg : SSL slot width = 1.0625 in., slot length = 1.3125 in. |
Bolt Strength Calcs: |
BOLT STRENGTH SUPPORT SIDE: Angle 1 Bolt Strength (at Shear Load Only): Gage ratio: gage1 ratio = gage2 / (gage1 + gage2) = 6.59 / (3.25 + 6.59) = 0.67 Required tension stress (frt) = gage1 ratio * axial reaction / shared bolt row count / bolt area = 0.670 * 0.000 / 2 / 0.785 = 0.000 ksi Required shear stress (frv) = gage1 ratio * vertical reaction / bolt row count / bolt area = 0.67 * 8.37 / 2 / 0.79 = 3.57 ksi C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 21.21 * 2.00 = 42.41 kips Angle 1 Bolt Shear Strength Subtotal = 42.41 kips Angle 2 Bolt Strength (at Shear Load Only): Gage ratio: gage2 ratio = gage1 / (gage1 + gage2) = 3.25 / (3.25 + 6.59) = 0.33 Required tension stress (frt) = gage2 ratio * axial reaction / shared bolt row count / bolt area = 0.330 * 0.000 / 2 / 0.785 = 0.000 ksi Required shear stress (frv) = gage2 ratio * vertical reaction / bolt row count / bolt area = 0.33 * 8.37 / 2 / 0.79 = 1.76 ksi C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 21.21 * 2.00 = 42.41 kips Angle 2 Bolt Shear Strength Subtotal = 42.41 kips Total Support Side Bolt Shear Strength = min( Angle1 Bolt Shear/Gage1 Ratio , Angle2 Bolt Shear/Gage2 Ratio ) = min (63.33, 128.41) = 63.33 kips BOLT STRENGTH BEAM SIDE: At ShearPlane 1(Angle 1): Bolt Strength: C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 21.21 * 2.00 = 42.41 kips At ShearPlane 2(Angle 2): Bolt Strength: C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 21.21 * 2.00 = 42.41 kips Total Vertical Bolt Shear Strength = Min(ShearPlane 1 Shear Load Only / gage1 ratio, ShearPlane 2 Shear Load Only / gage2 ratio) = Min(42.41 / 0.67, 42.41 / 0.33) = 63.33 kips |
Bolt Bearing Calcs: |
BOLT BEARING AT BEAM SIDE: Vertical Shear Only Load Case: At ShearPlane 1 At Row 1, At Column 1: Ri1 = 21.21 kips Lcsbm at Beam spacing = 1.94 in. Lcebm at Beam edge = 1.97 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.22/2) * 65.00 = 8.31 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.97 * (0.22/2) * 65.00 = 8.45 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.22/2) * 65.00 = 8.58 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.31, 8.45, 8.58) = 8.31 kips/bolt Lcsang1 at Angle 1 spacing = 1.94 in. Lceang1 at Angle 1 edge = 3.72 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.72 * 1.00 * 58.00 = 129.41 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(67.42, 129.41, 69.60) = 67.42 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(21.21, 8.312, 67.425) = 8.31 kips/bolt At Row 2, At Column 1: Ri1 = 21.21 kips Lcsbm at Beam spacing = 1.94 in. Lcebm at Beam edge = 4.97 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.22/2) * 65.00 = 8.31 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.97 * (0.22/2) * 65.00 = 21.32 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.22/2) * 65.00 = 8.58 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.31, 21.32, 8.58) = 8.31 kips/bolt Lcsang1 at Angle 1 spacing = 1.94 in. Lceang1 at Angle 1 edge = 0.72 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.72 * 1.00 * 58.00 = 25.01 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(67.42, 25.01, 69.60) = 25.01 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(21.21, 8.312, 25.012) = 8.31 kips/bolt Bearing Capacity at Shear Plane 1 = Sum{ Bearing At [(Row)i,(Column)i] } = 8.312 + 8.312 = 16.62 kips At ShearPlane 2 At Row 1, At Column 1: Ri2 = 21.21 kips Lcsbm at Beam spacing = 1.94 in. Lcebm at Beam edge = 1.97 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.22/2) * 65.00 = 8.31 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.97 * (0.22/2) * 65.00 = 8.45 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.22/2) * 65.00 = 8.58 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.31, 8.45, 8.58) = 8.31 kips/bolt Lcsang2 at Angle 2 spacing = 1.94 in. Lceang2 at Angle 2 edge = 3.72 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.72 * 1.00 * 58.00 = 129.41 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(67.42, 129.41, 69.60) = 67.42 kips/bolt 1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(21.21, 8.312, 67.425) = 8.31 kips/bolt At Row 2, At Column 1: Ri2 = 21.21 kips Lcsbm at Beam spacing = 1.94 in. Lcebm at Beam edge = 4.97 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.94 * (0.22/2) * 65.00 = 8.31 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.97 * (0.22/2) * 65.00 = 21.32 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 1.00 * (0.22/2) * 65.00 = 8.58 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.31, 21.32, 8.58) = 8.31 kips/bolt Lcsang2 at Angle 2 spacing = 1.94 in. Lceang2 at Angle 2 edge = 0.72 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.72 * 1.00 * 58.00 = 25.01 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(67.42, 25.01, 69.60) = 25.01 kips/bolt 1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(21.21, 8.312, 25.012) = 8.31 kips/bolt Bearing Capacity at Shear Plane 2 = Sum{ Bearing At [(Row)i,(Column)i] } = 8.312 + 8.312 = 16.62 kips BEARING AT BEAM SIDE SUMMARY: Bearing Capacity at Beam and Double Angles at Vertical Shear Load Only, Rbv1 = Min(Sum{ Bearing At Shear Plane 1 [(Row)i,(Column)i] } / Gage1 Ratio, Sum{ Bearing At Shear Plane 2 [(Row)i,(Column)i] } / Gage2 Ratio ) = Min( 16.62/ 0.67, 16.62/ 0.33 ) = 24.82 kips BOLT BEARING AT SUPPORT SIDE: Angle 1, Vertical Shear Loading: At Row 1, At Column 1: Ri1 = 21.21 kips Lcssupp at Support spacing = 1.94 in. Lcesupp at Support edge = 8.92 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.94 * (0.25/2) * 65.00 = 9.45 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 8.92 * (0.25/2) * 65.00 = 43.48 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 1.00 * (0.25/2) * 65.00 = 9.75 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(9.45, 43.48, 9.75) = 9.45 kips/bolt Lcsang1 at Angle 1 spacing = 1.94 in. Lceang1 at Angle 1 edge = 0.72 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.72 * 1.00 * 58.00 = 25.01 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(67.42, 25.01, 69.60) = 25.01 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(21.21, 9.445, 25.012) = 9.45 kips/bolt At Row 2, At Column 1: Ri1 = 21.21 kips Lcssupp at Support spacing = 1.94 in. Lcesupp at Support edge = 5.92 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.94 * (0.25/2) * 65.00 = 9.45 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 5.92 * (0.25/2) * 65.00 = 28.85 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 1.00 * (0.25/2) * 65.00 = 9.75 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(9.45, 28.85, 9.75) = 9.45 kips/bolt Lcsang1 at Angle 1 spacing = 1.94 in. Lceang1 at Angle 1 edge = 3.72 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.72 * 1.00 * 58.00 = 129.41 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(67.42, 129.41, 69.60) = 67.42 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(21.21, 9.445, 67.425) = 9.45 kips/bolt Bearing Capacity at Shear Plane = Sum{ Bearing At [(Row)i,(Column)i] } = 9.445 + 9.445 = 18.89 kips BOLT BEARING AT SUPPORT SIDE: Angle 2, Vertical Shear Loading: At Row 1, At Column 1: Ri1 = 21.21 kips Lcssupp at Support spacing = 1.94 in. Lcesupp at Support edge = 8.92 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.94 * (0.25/2) * 65.00 = 9.45 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 8.92 * (0.25/2) * 65.00 = 43.48 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 1.00 * (0.25/2) * 65.00 = 9.75 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(9.45, 43.48, 9.75) = 9.45 kips/bolt Lcsang2 at Angle 2 spacing = 1.94 in. Lceang2 at Angle 2 edge = 0.72 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.72 * 1.00 * 58.00 = 25.01 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(67.42, 25.01, 69.60) = 25.01 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(21.21, 9.445, 25.012) = 9.45 kips/bolt At Row 2, At Column 1: Ri1 = 21.21 kips Lcssupp at Support spacing = 1.94 in. Lcesupp at Support edge = 5.92 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.94 * (0.25/2) * 65.00 = 9.45 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 5.92 * (0.25/2) * 65.00 = 28.85 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 1.00 * (0.25/2) * 65.00 = 9.75 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(9.45, 28.85, 9.75) = 9.45 kips/bolt Lcsang2 at Angle 2 spacing = 1.94 in. Lceang2 at Angle 2 edge = 3.72 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 1.94 * 1.00 * 58.00 = 67.42 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.72 * 1.00 * 58.00 = 129.41 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 1.00 * 1.00 * 58.00 = 69.60 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(67.42, 129.41, 69.60) = 67.42 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(21.21, 9.445, 67.425) = 9.45 kips/bolt Bearing Capacity at Shear Plane = Sum{ Bearing At [(Row)i,(Column)i] } = 9.445 + 9.445 = 18.89 kips Bearing At Support Side Summary: Bearing Capacity = min(At Angle1 Shear Only/Gage1 Ratio, At Angle2 Shear Only/Gage2 Ratio) = min(18.89/0.67, 18.89/0.33) = 28.21 kips |
Beam Strength Calcs: |
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 12 - 0 - 1 = 11 in. Gross Area (Shear) = [Web Depth] * tw = 11.00 * 0.22 = 2.42 in^2 Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw = (11.00 - (2 * 1.12)) * 0.22 = 1.93 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 2.42 = 48.40 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.93 = 37.54 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block Shear not required. Flexure at Longest Cope (Bottom Cope Only at Section) Eccentricity at Section, e = 3.38 in. Fy = 50.00 ksi Snet1 (bolt holes not applicable) = 6.34 in^3 Snet2 (bolt holes applicable) = 6.16 in^3 Znet = 10.14 in^3 Using Eq. 9-19 Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 6.34 / 3.38 = 56.31 kips Using Eq. 9-4 Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 10.14 / 3.38 = 97.65 kips Flexure at Furthest Bolt Line within Cope (Bottom Cope Only at Section) Eccentricity at Section, e = 2.88 in. Fy = 50.00 ksi Snet1 (bolt holes not applicable) = 6.34 in^3 Snet2 (bolt holes applicable) = 6.16 in^3 Znet = 10.14 in^3 Using Eq. 9-19 Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 6.34 / 2.88 = 66.11 kips Using Eq. 9-4 Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 10.14 / 2.88 = 114.63 kips Section Bending Strength Calculations Summary: Coped Beam Flexure at Longest Cope (Bottom Cope Only at Section) Flexural Yielding : 56.31 >= 8.37 kips (OK) Flexural Rupture : 97.65 >= 8.37 kips (OK) Coped Beam Flexure at Furthest Bolt Line within Cope (Bottom Cope Only at Section) Flexural Yielding : 66.11 >= 8.37 kips (OK) Flexural Rupture : 114.63 >= 8.37 kips (OK) |
Double Angles Bolted Bolted Calcs: |
Angle1 Support Angle Leg Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5.5 - 1.25) = 4.25 in. Net Shear Length = 4.25 - (1.5 * (1.06 + 1/16)) = 2.56 in. Gross Tension Length = [edge dist.] = 2.86 in. Net Tension Length = (2.86 - (1.31 + 1/16)/2) = 2.17 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 1.00 * ((0.60 * 58.00 * 2.56) + (1.00 * 58.00 * 2.17)) = 107.59 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 1.00 * ((0.60 * 36.00 * 4.25) + (1.00 * 58.00 * 2.17)) = 108.90 kips Block Shear = 107.59 kips Gross Area = 1.00 * 5.50 = 5.50 in^2 Net Area = (5.50 - (2 *(1.06 + 1/16)) * 1.00 = 3.25 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 5.50 = 79.20 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 3.25 = 56.55 kips Rotational Ductility Check Using Eq. 9-37 Minimum bolt diameter = 0.16*tf*sqrt(Fy/b * (b^2/L^2 + 2)) = 0.16*1.00*sqrt(36.00/1.64 * (1.64^2/5.50^2 + 2)) = 1.10 in. Bolt diameter required = min(minimum bolt diameter, 0.69*sqrt(ts)) = min(1.10, 0.98) = 0.98 in. Beam Angle Leg Gross Area = 1.00 * 5.50 = 5.50 in^2 Net Area = (5.50 - (2 *(1.06 + 1/16)) * 1.00 = 3.25 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 5.50 = 79.20 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 3.25 = 56.55 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5.5 - 1.25) = 4.25 in. Net Shear Length = 4.25 - (1.5 * (1.06 + 1/16) = 2.56 in. Gross Tension Length = [edge dist.] = 3.25 in. Net Tension Length = (3.25 - (1.06 + 1/16)/2) = 2.69 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 1.00 * ((0.60 * 58.00 * 2.56) + (1.00 * 58.00 * 2.69)) = 122.53 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 1.00 * ((0.60 * 36.00 * 4.25) + (1.00 * 58.00 * 2.69)) = 123.84 kips Block Shear = 122.53 kips Angle2 Support Angle Leg Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5.5 - 1.25) = 4.25 in. Net Shear Length = 4.25 - (1.5 * (1.06 + 1/16)) = 2.56 in. Gross Tension Length = [edge dist.] = 1.52 in. Net Tension Length = (1.52 - (1.31 + 1/16)/2) = 0.83 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 1.00 * ((0.60 * 58.00 * 2.56) + (1.00 * 58.00 * 0.83)) = 68.73 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 1.00 * ((0.60 * 36.00 * 4.25) + (1.00 * 58.00 * 0.83)) = 70.04 kips Block Shear = 68.73 kips Gross Area = 1.00 * 5.50 = 5.50 in^2 Net Area = (5.50 - (2 *(1.06 + 1/16)) * 1.00 = 3.25 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 5.50 = 79.20 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 3.25 = 56.55 kips Rotational Ductility Check Using Eq. 9-37 Minimum bolt diameter = 0.16*tf*sqrt(Fy/b * (b^2/L^2 + 2)) = 0.16*1.00*sqrt(36.00/4.98 * (4.98^2/5.50^2 + 2)) = 0.74 in. Bolt diameter required = min(minimum bolt diameter, 0.69*sqrt(ts)) = min(0.74, 0.98) = 0.74 in. Beam Angle Leg Gross Area = 1.00 * 5.50 = 5.50 in^2 Net Area = (5.50 - (2 *(1.06 + 1/16)) * 1.00 = 3.25 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 5.50 = 79.20 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 3.25 = 56.55 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5.5 - 1.25) = 4.25 in. Net Shear Length = 4.25 - (1.5 * (1.06 + 1/16) = 2.56 in. Gross Tension Length = [edge dist.] = 3.25 in. Net Tension Length = (3.25 - (1.06 + 1/16)/2) = 2.69 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 1.00 * ((0.60 * 58.00 * 2.56) + (1.00 * 58.00 * 2.69)) = 122.53 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 1.00 * ((0.60 * 36.00 * 4.25) + (1.00 * 58.00 * 2.69)) = 123.84 kips Block Shear = 122.53 kips Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(118.259 , 239.793) = 118.259 kips Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(84.4388 , 171.216) = 84.4388 kips Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(160.65 , 208.093) = 160.65 kips Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(118.259 , 239.793) = 118.259 kips Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(84.4388 , 171.216) = 84.4388 kips Total Beam Side Vertical Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(182.951 , 370.968) = 182.951 kips |
Weld Calcs: |
(Not applicable / No results ) |