|
|
Summary Reports: | Job Standard Summary | Job Sample Calcs Report | B+Op Connection Comparison Report | Standard Connection Cost Report Job Preferences Report | No Connections Summary | No Connections Detailed | No Connections Reference Map | |||||||||
Shear and Axial Reports: | Shear Plate: | Specs | Strengths (Shear Only Connections) | Welds | Doublers | Connection Cost Report | ||||
Strengths (Shear & Axial Connections) | ||||||||||
Single Angle: | Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
Double Angle Reports: | Support Side Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
Beam Side Specs | ||||||||||
End Plate Reports: | Specs | Strengths (Shear & Axial) | Welds | Connection Cost Report | ||||||
Moment Reports: | Specs | Support Strengths | Beam Flange Welds | Connection Cost Report | ||||||
Moment Plates: | Specs | Strengths | Welds | |||||||
Column Stiffeners: | Specs | Strengths | Welds | |||||||
Column Web Doublers: | Specs | Strengths | Welds | |||||||
Shear Plate: | Specs | Strengths | Welds | |||||||
Double Angle: | Support Side Specs | Strengths | Welds | |||||||
Beam Side Specs | ||||||||||
Connection Number: |
bb.2bb.s.00039.00799 |
Main Calcs: |
DOUBLE ANGLES Bolted to Beam, Bolted to Support CONNECTION SUMMARY Girder profile: W12X14 Filler Beam profile: W8X10 Slope: 0.00 deg. Skew: 90.00 Vertical Offset: -4.00 Horizontal Offset: 0.00 Span: 2.40 ft. Reaction, V: 15.00 kips Shear Capacity, Rn: 17.87 kips Design/Reference according to AISC 14th Ed. - ASD Beam material grade: A992 Support material grade: A992 Angle material grade: A36 Angle1 Profile: L5X3-1/2X5/16 Length = 5.000 in. Beam side bolts: 2 rows x 1 column 0.75 in. Diameter A325N bolts Beam side bolt vertical spacing: 3 in. Support side bolts: 2 rows x 1 column 0.75 in. Diameter A325N_TC bolts Support side bolt vertical spacing: 3 in. Angle2 Profile: L5X3-1/2X5/16 Length = 5.000 in. Beam side bolts: 2 rows x 1 column 0.75 in. Diameter A325N bolts Beam side bolt vertical spacing: 3 in. Support side bolts: 2 rows x 1 column 0.75 in. Diameter A325N_TC bolts Support side bolt vertical spacing: 3 in. Configuration Geometry: Beam setback = 0.5 in. Edge distance at vertical edge of beam: 1.75 in. Edge distance at bottom edge of beam: 1.14 in. Bottom cope depth: 0.75 in. Bottom cope length: 2 in. Horizontal distance to first hole: 2.25 in. Bolted Angle Leg At Beam : Angle 1 Leg Distances : Down distance from top of filler beam flange : 3 in. Edge distance at vertical edge : 1.25 in. Edge distance at top edge : 1.00 in. Edge distance at bottom edge : 1.00 in. Angle 2 Leg Distances : Down distance from top of filler beam flange : 3 in. Edge distance at vertical edge : 1.25 in. Edge distance at top edge : 1.00 in. Edge distance at bottom edge : 1.00 in. Bolted Angle Leg At Support : Angle 1 Leg Distances : Down distance from top of filler beam flange : 3 in. Gage at Bolt : 3.25 in. Edge distance at vertical edge : 1.83 in. Edge distance at top edge : 1.00 in. Edge distance at bottom edge : 1.00 in. Angle 2 Leg Distances : Down distance from top of filler beam flange : 3 in. Gage at Bolt : 3.25 in. Edge distance at vertical edge : 1.83 in. Edge distance at top edge : 1.00 in. Edge distance at bottom edge : 1.00 in. Holes in Beam Web : STD diameter = 0.8125 in. Holes in Beam Angle Leg : STD diameter = 0.8125 in. Holes in Support Girder : STD diameter = 0.8125 in. Holes in Support Angle Leg : SSL slot width = 0.8125 in., slot length = 1 in. |
Bolt Strength Calcs: |
BOLT STRENGTH SUPPORT SIDE: Angle 1 Bolt Strength (at Shear Load Only): Gage ratio: gage1 ratio = gage2 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.5 Required tension stress (frt) = gage1 ratio * axial reaction / bolt row count / bolt area = 0.500 * 0.000 / 2 / 0.442 = 0.000 ksi Required shear stress (frv) = gage1 ratio * vertical reaction / bolt row count / bolt area = 0.50 * 15.00 / 2 / 0.44 = 8.49 ksi C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips Angle 1 Bolt Shear Strength Subtotal = 23.86 kips Angle 2 Bolt Strength (at Shear Load Only): Gage ratio: gage2 ratio = gage1 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.5 Required tension stress (frt) = gage2 ratio * axial reaction / bolt row count / bolt area = 0.500 * 0.000 / 2 / 0.442 = 0.000 ksi Required shear stress (frv) = gage2 ratio * vertical reaction / bolt row count / bolt area = 0.50 * 15.00 / 2 / 0.44 = 8.49 ksi C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips Angle 2 Bolt Shear Strength Subtotal = 23.86 kips Total Support Side Bolt Shear Strength = min( Angle1 Bolt Shear/Gage1 Ratio , Angle2 Bolt Shear/Gage2 Ratio ) = min (47.71, 47.71) = 47.71 kips BOLT STRENGTH BEAM SIDE: At ShearPlane 1(Angle 1): Bolt Strength: C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips At ShearPlane 2(Angle 2): Bolt Strength: C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips Total Vertical Bolt Shear Strength = Min(ShearPlane 1 Shear Load Only / gage1 ratio, ShearPlane 2 Shear Load Only / gage2 ratio) = Min(23.86 / 0.5, 23.86 / 0.5) = 47.71 kips |
Bolt Bearing Calcs: |
BOLT BEARING AT BEAM SIDE: Vertical Shear Only Load Case: At ShearPlane 1 At Row 1, At Column 1: Ri1 = 11.93 kips Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 2.59 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.17/2) * 65.00 = 7.25 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.59 * (0.17/2) * 65.00 = 8.60 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.17/2) * 65.00 = 4.97 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(7.25, 8.60, 4.97) = 4.97 kips/bolt Lcsang1 at Angle 1 spacing = 2.19 in. Lceang1 at Angle 1 edge = 3.59 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 4.973, 16.339) = 4.97 kips/bolt At Row 2, At Column 1: Ri1 = 11.93 kips Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 5.59 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.17/2) * 65.00 = 7.25 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.59 * (0.17/2) * 65.00 = 18.54 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.17/2) * 65.00 = 4.97 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(7.25, 18.54, 4.97) = 4.97 kips/bolt Lcsang1 at Angle 1 spacing = 2.19 in. Lceang1 at Angle 1 edge = 0.59 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 4.973, 6.467) = 4.97 kips/bolt Bearing Capacity at Shear Plane 1 = Sum{ Bearing At [(Row)i,(Column)i] } = 4.973 + 4.973 = 9.95 kips At ShearPlane 2 At Row 1, At Column 1: Ri2 = 11.93 kips Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 2.59 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.17/2) * 65.00 = 7.25 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.59 * (0.17/2) * 65.00 = 8.60 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.17/2) * 65.00 = 4.97 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(7.25, 8.60, 4.97) = 4.97 kips/bolt Lcsang2 at Angle 2 spacing = 2.19 in. Lceang2 at Angle 2 edge = 3.59 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt 1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 4.973, 16.339) = 4.97 kips/bolt At Row 2, At Column 1: Ri2 = 11.93 kips Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 5.59 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.17/2) * 65.00 = 7.25 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.59 * (0.17/2) * 65.00 = 18.54 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.17/2) * 65.00 = 4.97 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(7.25, 18.54, 4.97) = 4.97 kips/bolt Lcsang2 at Angle 2 spacing = 2.19 in. Lceang2 at Angle 2 edge = 0.59 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt 1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 4.973, 6.467) = 4.97 kips/bolt Bearing Capacity at Shear Plane 2 = Sum{ Bearing At [(Row)i,(Column)i] } = 4.973 + 4.973 = 9.95 kips BEARING AT BEAM SIDE SUMMARY: Bearing Capacity at Beam and Double Angles at Vertical Shear Load Only, Rbv1 = Min(Sum{ Bearing At Shear Plane 1 [(Row)i,(Column)i] } / Gage1 Ratio, Sum{ Bearing At Shear Plane 2 [(Row)i,(Column)i] } / Gage2 Ratio ) = Min( 9.95/ 0.50, 9.95/ 0.50 ) = 19.89 kips BOLT BEARING AT SUPPORT SIDE: Angle 1, Vertical Shear Loading: At Row 1, At Column 1: Ri1 = 11.93 kips Lcssupp at Support spacing = 2.19 in. Lcesupp at Support edge = 4.49 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.20/1) * 65.00 = 17.06 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 4.49 * (0.20/1) * 65.00 = 35.05 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(17.06, 35.05, 11.70) = 11.70 kips/bolt Lcsang1 at Angle 1 spacing = 2.19 in. Lceang1 at Angle 1 edge = 0.59 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 11.700, 6.467) = 6.47 kips/bolt At Row 2, At Column 1: Ri1 = 11.93 kips Lcssupp at Support spacing = 2.19 in. Lcesupp at Support edge = 1.49 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.20/1) * 65.00 = 17.06 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.49 * (0.20/1) * 65.00 = 11.65 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(17.06, 11.65, 11.70) = 11.65 kips/bolt Lcsang1 at Angle 1 spacing = 2.19 in. Lceang1 at Angle 1 edge = 3.59 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 11.651, 16.339) = 11.65 kips/bolt Bearing Capacity at Shear Plane = Sum{ Bearing At [(Row)i,(Column)i] } = 6.467 + 11.651 = 18.12 kips BOLT BEARING AT SUPPORT SIDE: Angle 2, Vertical Shear Loading: At Row 1, At Column 1: Ri1 = 11.93 kips Lcssupp at Support spacing = 2.19 in. Lcesupp at Support edge = 4.49 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.20/1) * 65.00 = 17.06 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 4.49 * (0.20/1) * 65.00 = 35.05 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(17.06, 35.05, 11.70) = 11.70 kips/bolt Lcsang2 at Angle 2 spacing = 2.19 in. Lceang2 at Angle 2 edge = 0.59 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 11.700, 6.467) = 6.47 kips/bolt At Row 2, At Column 1: Ri1 = 11.93 kips Lcssupp at Support spacing = 2.19 in. Lcesupp at Support edge = 1.49 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.20/1) * 65.00 = 17.06 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 1.49 * (0.20/1) * 65.00 = 11.65 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.20/1) * 65.00 = 11.70 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(17.06, 11.65, 11.70) = 11.65 kips/bolt Lcsang2 at Angle 2 spacing = 2.19 in. Lceang2 at Angle 2 edge = 3.59 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 11.651, 16.339) = 11.65 kips/bolt Bearing Capacity at Shear Plane = Sum{ Bearing At [(Row)i,(Column)i] } = 6.467 + 11.651 = 18.12 kips Bearing At Support Side Summary: Bearing Capacity = min(At Angle1 Shear Only/Gage1 Ratio, At Angle2 Shear Only/Gage2 Ratio) = min(18.12/0.50, 18.12/0.50) = 36.24 kips |
Beam Strength Calcs: |
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 7.89 - 0 - 0.75 = 7.14 in. Gross Area (Shear) = [Web Depth] * tw = 7.14 * 0.17 = 1.21 in^2 Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw = (7.14 - (2 * 0.88)) * 0.17 = 0.92 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 1.21 = 24.28 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 0.92 = 17.87 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block Shear not required. Flexure at Longest Cope (Bottom Cope Only at Section) Eccentricity at Section, e = 2.60 in. Fy = 50.00 ksi Snet1 (bolt holes not applicable) = 2.20 in^3 Snet2 (bolt holes applicable) = 1.57 in^3 Znet = 2.89 in^3 Using Eq. 9-19 Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 2.20 / 2.60 = 25.42 kips Using Eq. 9-4 Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 2.89 / 2.60 = 36.06 kips Flexure at Furthest Bolt Line within Cope (Bottom Cope Only at Section) Eccentricity at Section, e = 2.35 in. Fy = 50.00 ksi Snet1 (bolt holes not applicable) = 2.20 in^3 Snet2 (bolt holes applicable) = 1.57 in^3 Znet = 2.89 in^3 Using Eq. 9-19 Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 2.20 / 2.35 = 28.12 kips Using Eq. 9-4 Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 2.89 / 2.35 = 39.90 kips Section Bending Strength Calculations Summary: Coped Beam Flexure at Longest Cope (Bottom Cope Only at Section) Flexural Yielding : 25.42 >= 15.00 kips (OK) Flexural Rupture : 36.06 >= 15.00 kips (OK) Coped Beam Flexure at Furthest Bolt Line within Cope (Bottom Cope Only at Section) Flexural Yielding : 28.12 >= 15.00 kips (OK) Flexural Rupture : 39.90 >= 15.00 kips (OK) |
Double Angles Bolted Bolted Calcs: |
Angle1 Support Angle Leg Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5 - 1) = 4.00 in. Net Shear Length = 4 - (1.5 * (0.812 + 1/16)) = 2.69 in. Gross Tension Length = [edge dist.] = 1.83 in. Net Tension Length = (1.83 - (1 + 1/16)/2) = 1.30 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 1.30)) = 26.47 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 1.30)) = 25.36 kips Block Shear = 25.36 kips Gross Area = 0.31 * 5.00 = 1.56 in^2 Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips Beam Angle Leg Gross Area = 0.31 * 5.00 = 1.56 in^2 Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5 - 1) = 4.00 in. Net Shear Length = 4 - (1.5 * (0.812 + 1/16) = 2.69 in. Gross Tension Length = [edge dist.] = 1.25 in. Net Tension Length = (1.25 - (0.812 + 1/16)/2) = 0.81 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 0.81)) = 22.01 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 0.81)) = 20.90 kips Block Shear = 20.90 kips Angle2 Support Angle Leg Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5 - 1) = 4.00 in. Net Shear Length = 4 - (1.5 * (0.812 + 1/16)) = 2.69 in. Gross Tension Length = [edge dist.] = 1.83 in. Net Tension Length = (1.83 - (1 + 1/16)/2) = 1.30 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 1.30)) = 26.47 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 1.30)) = 25.36 kips Block Shear = 25.36 kips Gross Area = 0.31 * 5.00 = 1.56 in^2 Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips Beam Angle Leg Gross Area = 0.31 * 5.00 = 1.56 in^2 Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5 - 1) = 4.00 in. Net Shear Length = 4 - (1.5 * (0.812 + 1/16) = 2.69 in. Gross Tension Length = [edge dist.] = 1.25 in. Net Tension Length = (1.25 - (0.812 + 1/16)/2) = 0.81 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 0.81)) = 22.01 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 0.81)) = 20.90 kips Block Shear = 20.90 kips Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(45.072 , 45.072) = 45.072 kips Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(35.4003 , 35.4003) = 35.4003 kips Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(50.7115 , 50.7115) = 50.7115 kips Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(45.072 , 45.072) = 45.072 kips Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(35.4003 , 35.4003) = 35.4003 kips Total Beam Side Vertical Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(41.7933 , 41.7933) = 41.7933 kips |
Weld Calcs: |
(Not applicable / No results ) |