|
|
Summary Reports: | Job Standard Summary | Job Sample Calcs Report | B+Op Connection Comparison Report | Standard Connection Cost Report Job Preferences Report | No Connections Summary | No Connections Detailed | No Connections Reference Map | |||||||||
Shear and Axial Reports: | Shear Plate: | Specs | Strengths (Shear Only Connections) | Welds | Doublers | Connection Cost Report | ||||
Strengths (Shear & Axial Connections) | ||||||||||
Single Angle: | Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
Double Angle Reports: | Support Side Specs | Strengths (Shear & Axial) | Welds | Doublers | Connection Cost Report | |||||
Beam Side Specs | ||||||||||
End Plate Reports: | Specs | Strengths (Shear & Axial) | Welds | Connection Cost Report | ||||||
Moment Reports: | Specs | Support Strengths | Beam Flange Welds | Connection Cost Report | ||||||
Moment Plates: | Specs | Strengths | Welds | |||||||
Column Stiffeners: | Specs | Strengths | Welds | |||||||
Column Web Doublers: | Specs | Strengths | Welds | |||||||
Shear Plate: | Specs | Strengths | Welds | |||||||
Double Angle: | Support Side Specs | Strengths | Welds | |||||||
Beam Side Specs | ||||||||||
Connection Number: |
bb.2bb.s.00017.00437 |
Main Calcs: |
DOUBLE ANGLES Bolted to Beam, Bolted to Support CONNECTION SUMMARY Girder profile: W10X12 Filler Beam profile: W10X12 Slope: 0.00 deg. Skew: 90.00 Vertical Offset: 0.00 Horizontal Offset: 0.00 Span: 4.33 ft. Reaction, V: 20.00 kips Shear Capacity, Rn: 22.23 kips Design/Reference according to AISC 14th Ed. - ASD Beam material grade: A992 Support material grade: A992 Angle material grade: A36 Angle1 Profile: L5X3-1/2X5/16 Length = 5.000 in. Beam side bolts: 2 rows x 1 column 0.75 in. Diameter A325N bolts Beam side bolt vertical spacing: 3 in. Support side bolts: 2 rows x 1 column 0.75 in. Diameter A325N_TC bolts Support side bolt vertical spacing: 3 in. Angle2 Profile: L5X3-1/2X5/16 Length = 5.000 in. Beam side bolts: 2 rows x 1 column 0.75 in. Diameter A325N bolts Beam side bolt vertical spacing: 3 in. Support side bolts: 2 rows x 1 column 0.75 in. Diameter A325N_TC bolts Support side bolt vertical spacing: 3 in. Configuration Geometry: Beam setback = 0.5 in. Edge distance at vertical edge of beam: 1.75 in. Edge distance at top edge of beam: 2.25 in. Edge distance at bottom edge of beam: 3.12 in. Top cope depth: 0.75 in. Top cope length: 2 in. Bottom cope depth: 0.75 in. Bottom cope length: 2 in. Horizontal distance to first hole: 2.25 in. Bolted Angle Leg At Beam : Angle 1 Leg Distances : Down distance from top of filler beam flange : 3 in. Edge distance at vertical edge : 1.25 in. Edge distance at top edge : 1.00 in. Edge distance at bottom edge : 1.00 in. Angle 2 Leg Distances : Down distance from top of filler beam flange : 3 in. Edge distance at vertical edge : 1.25 in. Edge distance at top edge : 1.00 in. Edge distance at bottom edge : 1.00 in. Bolted Angle Leg At Support : Angle 1 Leg Distances : Down distance from top of filler beam flange : 3 in. Gage at Bolt : 3.25 in. Edge distance at vertical edge : 1.84 in. Edge distance at top edge : 1.00 in. Edge distance at bottom edge : 1.00 in. Angle 2 Leg Distances : Down distance from top of filler beam flange : 3 in. Gage at Bolt : 3.25 in. Edge distance at vertical edge : 1.84 in. Edge distance at top edge : 1.00 in. Edge distance at bottom edge : 1.00 in. Holes in Beam Web : STD diameter = 0.8125 in. Holes in Beam Angle Leg : STD diameter = 0.8125 in. Holes in Support Girder : STD diameter = 0.8125 in. Holes in Support Angle Leg : SSL slot width = 0.8125 in., slot length = 1 in. |
Bolt Strength Calcs: |
BOLT STRENGTH SUPPORT SIDE: Angle 1 Bolt Strength (at Shear Load Only): Gage ratio: gage1 ratio = gage2 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.5 Required tension stress (frt) = gage1 ratio * axial reaction / bolt row count / bolt area = 0.500 * 0.000 / 2 / 0.442 = 0.000 ksi Required shear stress (frv) = gage1 ratio * vertical reaction / bolt row count / bolt area = 0.50 * 20.00 / 2 / 0.44 = 11.32 ksi C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips Angle 1 Bolt Shear Strength Subtotal = 23.86 kips Angle 2 Bolt Strength (at Shear Load Only): Gage ratio: gage2 ratio = gage1 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.5 Required tension stress (frt) = gage2 ratio * axial reaction / bolt row count / bolt area = 0.500 * 0.000 / 2 / 0.442 = 0.000 ksi Required shear stress (frv) = gage2 ratio * vertical reaction / bolt row count / bolt area = 0.50 * 20.00 / 2 / 0.44 = 11.32 ksi C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips Angle 2 Bolt Shear Strength Subtotal = 23.86 kips Total Support Side Bolt Shear Strength = min( Angle1 Bolt Shear/Gage1 Ratio , Angle2 Bolt Shear/Gage2 Ratio ) = min (47.71, 47.71) = 47.71 kips BOLT STRENGTH BEAM SIDE: At ShearPlane 1(Angle 1): Bolt Strength: C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips At ShearPlane 2(Angle 2): Bolt Strength: C = no of bolts = 2.000 Using Table 7-1 to determine (1/omega) * rn: Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips Total Vertical Bolt Shear Strength = Min(ShearPlane 1 Shear Load Only / gage1 ratio, ShearPlane 2 Shear Load Only / gage2 ratio) = Min(23.86 / 0.5, 23.86 / 0.5) = 47.71 kips |
Bolt Bearing Calcs: |
BOLT BEARING AT BEAM SIDE: Vertical Shear Only Load Case: At ShearPlane 1 At Row 1, At Column 1: Ri1 = 11.93 kips Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 1.84 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.19/2) * 65.00 = 8.10 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.84 * (0.19/2) * 65.00 = 6.83 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.19/2) * 65.00 = 5.56 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.10, 6.83, 5.56) = 5.56 kips/bolt Lcsang1 at Angle 1 spacing = 2.19 in. Lceang1 at Angle 1 edge = 3.59 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 5.557, 16.339) = 5.56 kips/bolt At Row 2, At Column 1: Ri1 = 11.93 kips Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 4.84 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.19/2) * 65.00 = 8.10 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.84 * (0.19/2) * 65.00 = 17.95 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.19/2) * 65.00 = 5.56 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.10, 17.95, 5.56) = 5.56 kips/bolt Lcsang1 at Angle 1 spacing = 2.19 in. Lceang1 at Angle 1 edge = 0.59 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 5.557, 6.467) = 5.56 kips/bolt Bearing Capacity at Shear Plane 1 = Sum{ Bearing At [(Row)i,(Column)i] } = 5.557 + 5.557 = 11.11 kips At ShearPlane 2 At Row 1, At Column 1: Ri2 = 11.93 kips Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 1.84 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.19/2) * 65.00 = 8.10 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.84 * (0.19/2) * 65.00 = 6.83 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.19/2) * 65.00 = 5.56 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.10, 6.83, 5.56) = 5.56 kips/bolt Lcsang2 at Angle 2 spacing = 2.19 in. Lceang2 at Angle 2 edge = 3.59 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt 1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 5.557, 16.339) = 5.56 kips/bolt At Row 2, At Column 1: Ri2 = 11.93 kips Lcsbm at Beam spacing = 2.19 in. Lcebm at Beam edge = 4.84 in. 1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.19/2) * 65.00 = 8.10 kips/bolt 1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.84 * (0.19/2) * 65.00 = 17.95 kips/bolt 1/omegaRndbm on Beam at Bolt Diameter = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.19/2) * 65.00 = 5.56 kips/bolt Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.10, 17.95, 5.56) = 5.56 kips/bolt Lcsang2 at Angle 2 spacing = 2.19 in. Lceang2 at Angle 2 edge = 0.59 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt 1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 5.557, 6.467) = 5.56 kips/bolt Bearing Capacity at Shear Plane 2 = Sum{ Bearing At [(Row)i,(Column)i] } = 5.557 + 5.557 = 11.11 kips BEARING AT BEAM SIDE SUMMARY: Bearing Capacity at Beam and Double Angles at Vertical Shear Load Only, Rbv1 = Min(Sum{ Bearing At Shear Plane 1 [(Row)i,(Column)i] } / Gage1 Ratio, Sum{ Bearing At Shear Plane 2 [(Row)i,(Column)i] } / Gage2 Ratio ) = Min( 11.11/ 0.50, 11.11/ 0.50 ) = 22.23 kips BOLT BEARING AT SUPPORT SIDE: Angle 1, Vertical Shear Loading: At Row 1, At Column 1: Ri1 = 11.93 kips Lcssupp at Support spacing = 2.19 in. Lcesupp at Support edge = 6.46 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.19/1) * 65.00 = 16.21 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 6.46 * (0.19/1) * 65.00 = 47.90 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.19/1) * 65.00 = 11.11 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(16.21, 47.90, 11.11) = 11.11 kips/bolt Lcsang1 at Angle 1 spacing = 2.19 in. Lceang1 at Angle 1 edge = 0.59 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 11.115, 6.467) = 6.47 kips/bolt At Row 2, At Column 1: Ri1 = 11.93 kips Lcssupp at Support spacing = 2.19 in. Lcesupp at Support edge = 3.46 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.19/1) * 65.00 = 16.21 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 3.46 * (0.19/1) * 65.00 = 25.67 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.19/1) * 65.00 = 11.11 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(16.21, 25.67, 11.11) = 11.11 kips/bolt Lcsang1 at Angle 1 spacing = 2.19 in. Lceang1 at Angle 1 edge = 3.59 in. 1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt 1/omegaRndang1 on Angle 1 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 11.115, 16.339) = 11.11 kips/bolt Bearing Capacity at Shear Plane = Sum{ Bearing At [(Row)i,(Column)i] } = 6.467 + 11.115 = 17.58 kips BOLT BEARING AT SUPPORT SIDE: Angle 2, Vertical Shear Loading: At Row 1, At Column 1: Ri1 = 11.93 kips Lcssupp at Support spacing = 2.19 in. Lcesupp at Support edge = 6.46 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.19/1) * 65.00 = 16.21 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 6.46 * (0.19/1) * 65.00 = 47.90 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.19/1) * 65.00 = 11.11 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(16.21, 47.90, 11.11) = 11.11 kips/bolt Lcsang2 at Angle 2 spacing = 2.19 in. Lceang2 at Angle 2 edge = 0.59 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 11.115, 6.467) = 6.47 kips/bolt At Row 2, At Column 1: Ri1 = 11.93 kips Lcssupp at Support spacing = 2.19 in. Lcesupp at Support edge = 3.46 in. 1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.19/1) * 65.00 = 16.21 kips/bolt 1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 3.46 * (0.19/1) * 65.00 = 25.67 kips/bolt 1/omegaRndsupp on Support at Bolt Diameter = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.19/1) * 65.00 = 11.11 kips/bolt Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(16.21, 25.67, 11.11) = 11.11 kips/bolt Lcsang2 at Angle 2 spacing = 2.19 in. Lceang2 at Angle 2 edge = 3.59 in. 1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt 1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt 1/omegaRndang2 on Angle 2 at Bolt Diameter = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt 1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 11.115, 16.339) = 11.11 kips/bolt Bearing Capacity at Shear Plane = Sum{ Bearing At [(Row)i,(Column)i] } = 6.467 + 11.115 = 17.58 kips Bearing At Support Side Summary: Bearing Capacity = min(At Angle1 Shear Only/Gage1 Ratio, At Angle2 Shear Only/Gage2 Ratio) = min(17.58/0.50, 17.58/0.50) = 35.16 kips |
Beam Strength Calcs: |
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 9.87 - 0.75 - 0.75 = 8.37 in. Gross Area (Shear) = [Web Depth] * tw = 8.37 * 0.19 = 1.59 in^2 Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw = (8.37 - (2 * 0.88)) * 0.19 = 1.26 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 1.59 = 31.81 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.26 = 24.53 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block Shear (1) Gross Shear Length = [edge dist. at beam edge] + ([# rows - 1] * [spacing]) = 2.25 + 3 = 5.25 in. Net Shear Length = Gross Shear Length - (# rows - 0.5) * (hole size + 0.0625) = 5.25 - (2 - 0.5) * 0.875 = 3.94 in. Gross Tension Length = [edge dist. at beam edge] + ([# cols - 1] * [spacing]) = 1.75 + (1 - 1) * 3 = 1.75 in. Net Tension Length = Gross Tension Length - (# cols - 0.5) * (hole size + 0.0625) = 1.75 - (1 - 0.5) * 0.875 = 1.31 in. 1. (1/omega) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length])) = 0.50 * 0.19 * ((0.60 * 65.00 * 3.94) + (1.00 * 65.00 * 1.31)) = 22.69 kips 2. (1/omega) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length])) = 0.50 * 0.19 * ((0.60 * 50.00 * 5.25) + (1.00 * 65.00 * 1.31)) = 23.07 kips Block Shear = 22.69 kips Block Shear (1) Total = Block Shear (1) = 22.69 kips Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section) Eccentricity at Section, e = 2.60 in. If beam is coped at both top and bottom flanges, Using Eq. 9-14 through 9-18, Fcr = Fy * Q tw = 0.19 in. ho = 8.37 in. c = 2.00 in. lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = = 8.37 * 50.00^0.5 / (10 * 0.19 * (475.00 + 280.00 * (8.37/2.00)^2 )^0.5) = 0.42 When lambda <= 0.70, Q=1 Q = 1.00 Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi Snet1 (bolt holes not applicable) = 2.22 in^3 Snet2 (bolt holes applicable) = 1.96 in^3 Znet = 2.83 in^3 Using Eq. 9-6 Buckling = Fcr * Snet1 / e = 30.00 * 2.22 / 2.60 = 25.65 kips Using Eq. 9-19 Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 2.22 / 2.60 = 25.65 kips Using Eq. 9-4 Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 2.83 / 2.60 = 35.43 kips Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section) Eccentricity at Section, e = 2.35 in. If beam is coped at both top and bottom flanges, Using Eq. 9-14 through 9-18, Fcr = Fy * Q tw = 0.19 in. ho = 8.37 in. c = 2.00 in. lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = = 8.37 * 50.00^0.5 / (10 * 0.19 * (475.00 + 280.00 * (8.37/2.00)^2 )^0.5) = 0.42 When lambda <= 0.70, Q=1 Q = 1.00 Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi Snet1 (bolt holes not applicable) = 2.22 in^3 Snet2 (bolt holes applicable) = 1.96 in^3 Znet = 2.83 in^3 Using Eq. 9-6 Buckling = Fcr * Snet1 / e = 30.00 * 2.22 / 2.35 = 28.38 kips Using Eq. 9-19 Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 2.22 / 2.35 = 28.38 kips Using Eq. 9-4 Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 2.83 / 2.35 = 39.21 kips Section Bending Strength Calculations Summary: Coped Beam Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section) Buckling : 25.65 >= 20.00 kips (OK) Flexural Yielding : 25.65 >= 20.00 kips (OK) Flexural Rupture : 35.43 >= 20.00 kips (OK) Coped Beam Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section) Buckling : 28.38 >= 20.00 kips (OK) Flexural Yielding : 28.38 >= 20.00 kips (OK) Flexural Rupture : 39.21 >= 20.00 kips (OK) |
Double Angles Bolted Bolted Calcs: |
Angle1 Support Angle Leg Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5 - 1) = 4.00 in. Net Shear Length = 4 - (1.5 * (0.812 + 1/16)) = 2.69 in. Gross Tension Length = [edge dist.] = 1.84 in. Net Tension Length = (1.84 - (1 + 1/16)/2) = 1.31 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 1.31)) = 26.56 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 1.31)) = 25.45 kips Block Shear = 25.45 kips Gross Area = 0.31 * 5.00 = 1.56 in^2 Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips Beam Angle Leg Gross Area = 0.31 * 5.00 = 1.56 in^2 Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5 - 1) = 4.00 in. Net Shear Length = 4 - (1.5 * (0.812 + 1/16) = 2.69 in. Gross Tension Length = [edge dist.] = 1.25 in. Net Tension Length = (1.25 - (0.812 + 1/16)/2) = 0.81 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 0.81)) = 22.01 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 0.81)) = 20.90 kips Block Shear = 20.90 kips Angle2 Support Angle Leg Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5 - 1) = 4.00 in. Net Shear Length = 4 - (1.5 * (0.812 + 1/16)) = 2.69 in. Gross Tension Length = [edge dist.] = 1.84 in. Net Tension Length = (1.84 - (1 + 1/16)/2) = 1.31 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 1.31)) = 26.56 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 1.31)) = 25.45 kips Block Shear = 25.45 kips Gross Area = 0.31 * 5.00 = 1.56 in^2 Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips Beam Angle Leg Gross Area = 0.31 * 5.00 = 1.56 in^2 Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2 Using Eq.J4-3: Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips Using Eq.J4-4: Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips Block Shear Using Eq.J4-5: Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))} Block 1 (Shear): Gross Shear Length = (5 - 1) = 4.00 in. Net Shear Length = 4 - (1.5 * (0.812 + 1/16) = 2.69 in. Gross Tension Length = [edge dist.] = 1.25 in. Net Tension Length = (1.25 - (0.812 + 1/16)/2) = 0.81 in. 1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 0.81)) = 22.01 kips 2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 0.81)) = 20.90 kips Block Shear = 20.90 kips Total Support Side Shear Yielding Capacity = min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) = min(45.072 , 45.072) = 45.072 kips Total Support Side Shear Rupture Capacity = min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(35.4003 , 35.4003) = 35.4003 kips Total Support Side Vertical Block Shear Capacity = min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(50.893 , 50.893) = 50.893 kips Total Beam Side Shear Yielding Capacity = min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(45.072 , 45.072) = 45.072 kips Total Beam Side Shear Rupture Capacity = min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(35.4003 , 35.4003) = 35.4003 kips Total Beam Side Vertical Block Shear Capacity = min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(41.7933 , 41.7933) = 41.7933 kips |
Weld Calcs: |
(Not applicable / No results ) |