Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
Session Title: Baseline
Session Date: 2018-08-31 18:06:55
Model Name: Josh_Demo_2000_Tons.db1
B+Op Status: B+Op was disabled
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials:
Weld Shear Plate Angle Bm Web Doubler Plate Stabilizer Plate End Plate Col Moment Plate Col Stiffener Plate Col Web Doubler Plate
E70 A572-GR.50 A36 A572-GR.50 A572-GR.50 A572-GR.50 A572-GR.50 A572-GR.50 A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report  |  B+Op Comparison Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed  |  No Connections Reference Map
 
Shear Plate Reports: Specs  Strengths (Shear Only Connections)  Strengths (Shear & Axial Connections)  Welds  Doublers
Single Angle Reports:  Specs  Strengths (Shear & Axial)  Welds  Doublers
Double Angle Reports:  Support Side Specs  Beam Side Specs  Strengths (Shear & Axial)  Welds  Doublers
Moment Reports:  Specs  Support Strengths  Support Reinforcement Strengths  Moment Plate Strengths  Welds
Moment Group Reports:  Doubler Plate Specs  Doubler Plate Welds  Stiffener / Moment Plate Specs  Stiffener / Moment Plate Welds

Connection Number:
bcw.s.s.00028.00445
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W21X50
Column profile: W14X145
Slope: 0 deg.
Skew: 90
Vertical Offset: 0
Horizontal Offset: 0
Span: 45 ft.
Reaction, V: 33 kips
Shear Capacity, Rn: 38.8 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A36
Weld grade: E70
Shear Plate Size: 14.000 in. x 14.500 in. x 0.500 in.
Configuration Geometry:
Welds at shear plate to support: 5/16 FILLET, 5/16 FILLET
Bolt: 5 rows x 2 columns 0.75 in. Diameter A325N_TC bolts
Vertical spacing: 3 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 7.94 in.
Beam centerline setback = 7.94 in.
Edge distance at vertical edge of plate: 1.5 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.56 in.
Horizontal distance to first hole: 9.5 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.812 in.
Holes in shear plate: SSL diameter = 0.812 in., slot width = 1 in.
Bolt Strength Calcs:
BOLT STRENGTH BEAM SIDE:

Bolt Strength:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 11.000 in.
Angle = 0.000 deg.
C = 3.251
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 3.25 = 38.78 kips
Bolt Bearing Calcs:
BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.54, 0.00)
At Row 1, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam   = <10.44, 5.29>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 6.23 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.38/1) * 65.00 = 46.18 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 6.23 * (0.38/1) * 65.00 = 92.30 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(46.18, 92.30, 22.23) = 22.23 kips/bolt
Ri vector at Shear Plate   = <-10.44, -5.29>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 10.09 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.50 * 58.00 = 53.07 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 10.09 * 0.50 * 58.00 = 175.57 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(53.07, 175.57, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(22.230, 26.100) = 22.23 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.23 / 11.71 = 1.90

At Row 1, At Column 2:
Ri1 = 11.61 kips
Ri vector at Beam   = <11.61, 0.08>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 430.22 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.38/1) * 65.00 = 32.42 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 430.22 * (0.38/1) * 65.00 = 6375.91 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(32.42, 6375.91, 22.23) = 22.23 kips/bolt
Ri vector at Shear Plate   = <-11.61, -0.08>
Lcsshpl at Shear Plate spacing  = 2.00 in.
Lceshpl at Shear Plate edge    = 12.00 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2 * 0.50 * 58.00 = 34.80 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.00 * 0.50 * 58.00 = 208.81 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(34.80, 208.81, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(22.230, 26.100) = 22.23 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.23 / 11.61 = 1.91

At Row 2, At Column 1:
Ri1 = 11.15 kips
Ri vector at Beam   = <7.83, 7.94>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 8.02 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.38/1) * 65.00 = 46.18 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 8.02 * (0.38/1) * 65.00 = 118.87 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(46.18, 118.87, 22.23) = 22.23 kips/bolt
Ri vector at Shear Plate   = <-7.83, -7.94>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 12.96 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.50 * 58.00 = 53.07 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.96 * 0.50 * 58.00 = 225.48 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(53.07, 225.48, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(22.230, 26.100) = 22.23 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.23 / 11.15 = 1.99

At Row 2, At Column 2:
Ri1 = 10.41 kips
Ri vector at Beam   = <10.41, 0.15>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 430.26 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.38/1) * 65.00 = 32.42 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 430.26 * (0.38/1) * 65.00 = 6376.38 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(32.42, 6376.38, 22.23) = 22.23 kips/bolt
Ri vector at Shear Plate   = <-10.41, -0.15>
Lcsshpl at Shear Plate spacing  = 2.00 in.
Lceshpl at Shear Plate edge    = 12.00 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2 * 0.50 * 58.00 = 34.80 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.00 * 0.50 * 58.00 = 208.82 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(34.80, 208.82, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(22.230, 26.100) = 22.23 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.23 / 10.41 = 2.14

At Row 3, At Column 1:
Ri1 = 10.44 kips
Ri vector at Beam   = <-0.00, 10.44>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 8.59 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.38/1) * 65.00 = 32.42 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 8.59 * (0.38/1) * 65.00 = 127.36 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(32.42, 127.36, 22.23) = 22.23 kips/bolt
Ri vector at Shear Plate   = <0.00, -10.44>
Lcsshpl at Shear Plate spacing  = 2.19 in.
Lceshpl at Shear Plate edge    = 6.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.50 * 58.00 = 38.06 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.84 * 0.50 * 58.00 = 119.08 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(38.06, 119.08, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(22.230, 26.100) = 22.23 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.23 / 10.44 = 2.13

At Row 3, At Column 2:
Ri1 = 1.42 kips
Ri vector at Beam   = <-0.00, 1.42>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 8.59 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.38/1) * 65.00 = 32.42 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 8.59 * (0.38/1) * 65.00 = 127.36 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(32.42, 127.36, 22.23) = 22.23 kips/bolt
Ri vector at Shear Plate   = <0.00, -1.42>
Lcsshpl at Shear Plate spacing  = 2.19 in.
Lceshpl at Shear Plate edge    = 6.84 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.50 * 58.00 = 38.06 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 6.84 * 0.50 * 58.00 = 119.08 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(38.06, 119.08, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(22.230, 26.100) = 22.23 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.23 / 1.42 = 15.64

At Row 4, At Column 1:
Ri1 = 11.15 kips
Ri vector at Beam   = <-7.83, 7.94>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 1.82 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.38/1) * 65.00 = 46.18 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.82 * (0.38/1) * 65.00 = 26.96 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(46.18, 26.96, 22.23) = 22.23 kips/bolt
Ri vector at Shear Plate   = <7.83, -7.94>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 5.40 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.50 * 58.00 = 53.07 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 5.40 * 0.50 * 58.00 = 93.94 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(53.07, 93.94, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(22.230, 26.100) = 22.23 kips/bolt
Bolt Shear Demand to Bearing ratio = 22.23 / 11.15 = 1.99

At Row 4, At Column 2:
Ri1 = 10.41 kips
Ri vector at Beam   = <-10.41, 0.15>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 4.16 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.38/1) * 65.00 = 32.42 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.16 * (0.38/1) * 65.00 = 61.60 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(32.42, 61.60, 22.23) = 22.23 kips/bolt
Ri vector at Shear Plate   = <10.41, -0.15>
Lcsshpl at Shear Plate spacing  = 2.00 in.
Lceshpl at Shear Plate edge    = 1.00 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2 * 0.50 * 58.00 = 34.80 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.00 * 0.50 * 58.00 = 17.40 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(34.80, 17.40, 26.10) = 17.40 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(22.230, 17.402) = 17.40 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.40 / 10.41 = 1.67

At Row 5, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam   = <-10.44, 5.29>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 1.35 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.38/1) * 65.00 = 46.18 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.35 * (0.38/1) * 65.00 = 19.94 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(46.18, 19.94, 22.23) = 19.94 kips/bolt
Ri vector at Shear Plate   = <10.44, -5.29>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 2.20 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.50 * 58.00 = 53.07 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 2.20 * 0.50 * 58.00 = 38.35 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(53.07, 38.35, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(19.941, 26.100) = 19.94 kips/bolt
Bolt Shear Demand to Bearing ratio = 19.94 / 11.71 = 1.70

At Row 5, At Column 2:
Ri1 = 11.61 kips
Ri vector at Beam   = <-11.61, 0.08>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 4.16 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.38/1) * 65.00 = 32.42 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.16 * (0.38/1) * 65.00 = 61.60 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.38/1) * 65.00 = 22.23 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(32.42, 61.60, 22.23) = 22.23 kips/bolt
Ri vector at Shear Plate   = <11.61, -0.08>
Lcsshpl at Shear Plate spacing  = 2.00 in.
Lceshpl at Shear Plate edge    = 1.00 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2 * 0.50 * 58.00 = 34.80 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.00 * 0.50 * 58.00 = 17.40 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(34.80, 17.40, 26.10) = 17.40 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(22.230, 17.400) = 17.40 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.40 / 11.61 = 1.50

Min Bolt Shear Demand to Bearing ratio for vertical shear only = min(1.0, 1.89876, 1.91496, 1.99367, 2.13578, 2.12895, 15.6395, 1.99367, 1.67189, 1.70328, 1.49893) = 1.00


Bearing Capacity at Beam and Shear Plate at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 38.78 = 38.78 kips
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 20.8 - 0 - 0 = 20.8 in.
Gross Area (Shear) = [Web Depth] * tw = 20.80 * 0.38 = 7.90 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (20.80 - (5 * 0.88)) * 0.38 = 6.24 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 7.90 = 158.08 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 6.24 = 121.71 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Shear Plate Calcs:
Gross Area = 0.50 * 14.50 = 7.25 in^2
Net Area = (14.50 - (5 *(0.81 + 1/16))) * 0.50 = 5.06 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 36.00 * 7.25 = 104.40 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 58.00 * 5.06 = 88.09 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (14.5 - 1.25) = 13.25 in.
Net Shear Length = 13.2 - (4.5 * (0.812 + 0.0625)) = 9.31 in.
Gross Tension Length = (3 + 1.5) = 4.50 in.
Net Tension Length = 4.5 - (1.5 * (1 + 0.0625)) = 2.91 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.50 * ((0.60 * 58.00 * 9.31) + (0.50 * 58.00 * 2.91)) = 102.09 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.50 * ((0.60 * 36.00 * 13.25) + (0.50 * 58.00 * 2.91)) = 92.62 kips
Block Shear = 92.62 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (14.5 - 1.25) = 26.50 in.
Net Shear Length = 2 * ( 13.2 - (4.5 * (0.812 + 0.0625)) ) = 18.62 in.
Gross Tension Length = (3 + 1.5) - 1.5 = 3.00 in.
Net Tension Length = 3 - 1 * (1 + 0.0625) = 1.94 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.50 * ((0.60 * 58.00 * 18.62) + (0.50 * 58.00 * 1.94)) = 176.08 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.50 * ((0.60 * 36.00 * 26.50) + (0.50 * 58.00 * 1.94)) = 157.15 kips
Block Shear = 157.15 kips

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.50 in.
Zgross = 26.28 in^3
Znet   = 18.31 in^3
Sgross = 17.52 in^3
Snet   = 12.09 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 18.31 / 9.50 = 55.90 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.50 in.
ho = 14.50 in.
c = 9.50 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 14.50 * 36.00^0.5 / (10 * 0.50 * (475.00 + 280.00 * (14.50/9.50)^2 )^0.5) = 0.52
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 21.60 * 17.52 / 9.50 = 39.84 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 11.00 in.
Zgross = 26.28
Znet = 26.28
Mr = Vr * e = 33.00 * 11.00 = 363.00 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 36.00 * 26.28 = 567.67 kips-in
Vr = 33.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 36.00 * 7.25 = 104.40 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (33.00 / 104.40)^2 + (363.00 / 567.67)^2 = 0.51 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
tmax = 6 * Mmax / (Fypl * d^2) Eq. 10-3
Mmax = (1/0.9) * Fv * Ab * C' Eq. 10-4
Mmax = (1/0.9) * 54 * 0.441786 * 38.6693 = 1025.02 kips-in
tmax = 6 * 1025.02 / (36 * 14.5^2) = 0.81 in.
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 14.50 * 0.50^3 / 9.50^2 = 56.78 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 33.00 * ((0.38 + 0.50) / 2) = 14.44 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 =  ((0.67 * 0.6 * 36.00) - (33.00 / (14.50 * 0.50))) * 0.5 * 14.50 * 0.50^2 = 17.85 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 14.500 in.
Shear Load per inch per weld, fv = R/Lv/2 = 33.000 / 14.500 / 2 = 1.138 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 1.138 / (0.500 * 1.856) = 1.226/16

Minimum fillet weld size : 
   At shear only load case = 0.08 in.
   per Table J2.4     = 0.19 in.
   5/8(tp)            = 0.31 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 0.500 * 58.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 4.687 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 0.680 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 7.144 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.687, 7.144, 12.000)
 = 4.687 

Use weld size
D1 = 5.00
D2 = 5.00

Weld Strength :
Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 14.50 * (4.69 + 4.69) = 126.15 kips