Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
Session Title: Baseline
Session Date: 2018-08-31 18:06:55
Model Name: Josh_Demo_2000_Tons.db1
B+Op Status: B+Op was disabled
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials: 
Weld E70
Shear Plate A572-GR.50
Angle A36
Bm Web Doubler Plate A572-GR.50
Stabilizer Plate A572-GR.50
End Plate A572-GR.50
Col Moment Plate A572-GR.50
Col Stiffener Plate A572-GR.50
Col Web Doubler Plate A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report  |  B+Op Comparison Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed  |  No Connections Reference Map
 
Shear Plate Reports: Specs  Strengths (Shear Only Connections)  Strengths (Shear & Axial Connections)  Welds  Doublers
Single Angle Reports:  Specs  Strengths (Shear & Axial)  Welds  Doublers
Double Angle Reports:  Support Side Specs  Beam Side Specs  Strengths (Shear & Axial)  Welds  Doublers
End Plate Reports:  Specs  Strengths (Shear & Axial)  Welds
Moment Reports:  Specs  Support Strengths  Support Reinforcement Strengths  Moment Plate Strengths  Welds
Moment Group Reports:  Doubler Plate Specs  Doubler Plate Welds  Stiffener / Moment Plate Specs  Stiffener / Moment Plate Welds

Connection Number:
bb.2bb.s.00017.00437
 
Main Calcs:
DOUBLE ANGLES Bolted to Beam, Bolted to Support CONNECTION SUMMARY

Girder profile: W10X12
Filler Beam profile: W10X12
Slope: 0.00 deg.
Skew: 90.00
Vertical Offset: 0.00
Horizontal Offset: 0.00
Span: 4.33 ft.
Reaction, V: 20.00 kips
Shear Capacity, Rn: 22.23 kips
Design/Reference according to AISC 14th Ed. - ASD
Beam material grade: A992
Support material grade: A992
Angle material grade: A36
Angle1 Profile: L5X3-1/2X5/16
       Length = 5.000 in.
       Beam side bolts: 2 rows x 1 column 0.75 in. Diameter A325N bolts
       Beam side bolt vertical spacing: 3 in.
       Support side bolts: 2 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3 in.
Angle2 Profile: L5X3-1/2X5/16
       Length = 5.000 in.
       Beam side bolts: 2 rows x 1 column 0.75 in. Diameter A325N bolts
       Beam side bolt vertical spacing: 3 in.
       Support side bolts: 2 rows x 1 column 0.75 in. Diameter A325N_TC bolts
       Support side bolt vertical spacing: 3 in.

Configuration Geometry:

Beam setback = 0.5 in.
Edge distance at vertical edge of beam: 1.75 in.
Edge distance at top edge of beam: 2.25 in.
Edge distance at bottom edge of beam: 3.12 in.
Top cope depth: 0.75 in.
Top cope length: 2 in.
Bottom cope depth: 0.75 in.
Bottom cope length: 2 in.

Horizontal distance to first hole: 2.25 in.

Bolted Angle Leg At Beam : 
Angle 1 Leg Distances : 
   Down distance from top of filler beam flange : 3 in.
   Edge distance at vertical edge : 1.25 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Angle 2 Leg Distances : 
   Down distance from top of filler beam flange : 3 in.
   Edge distance at vertical edge : 1.25 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Bolted Angle Leg At Support : 
Angle 1 Leg Distances : 
   Down distance from top of filler beam flange : 3 in.
   Gage at Bolt : 3.25 in.
   Edge distance at vertical edge : 1.84 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Angle 2 Leg Distances : 
   Down distance from top of filler beam flange : 3 in.
   Gage at Bolt : 3.25 in.
   Edge distance at vertical edge : 1.84 in.
   Edge distance at top edge : 1.00 in.
   Edge distance at bottom edge : 1.00 in.

Holes in Beam Web : STD diameter = 0.8125 in.
Holes in Beam Angle Leg : STD diameter = 0.8125 in.
Holes in Support Girder : STD diameter = 0.8125 in.
Holes in Support Angle Leg : SSL slot width = 0.8125 in., slot length = 1 in.
Bolt Strength Calcs:
BOLT STRENGTH SUPPORT SIDE:

Angle 1 Bolt Strength (at Shear Load Only):
Gage ratio:  gage1 ratio = gage2 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.5
Required tension stress (frt) = gage1 ratio * axial reaction    / bolt row count / bolt area  = 0.500 * 0.000 / 2 / 0.442 = 0.000 ksi
Required shear stress   (frv) = gage1 ratio * vertical reaction / bolt row count  / bolt area  = 0.50 * 20.00 / 2 / 0.44 = 11.32 ksi
C = no of bolts = 2.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips

Angle 1 Bolt Shear Strength Subtotal = 23.86 kips

Angle 2 Bolt Strength (at Shear Load Only):
Gage ratio:  gage2 ratio = gage1 / (gage1 + gage2) = 3.25 / (3.25 + 3.25) = 0.5
Required tension stress (frt) = gage2 ratio * axial reaction    / bolt row count / bolt area  = 0.500 * 0.000 / 2 / 0.442 = 0.000 ksi
Required shear stress   (frv) = gage2 ratio * vertical reaction / bolt row count  / bolt area  = 0.50 * 20.00 / 2 / 0.44 = 11.32 ksi
C = no of bolts = 2.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips

Angle 2 Bolt Shear Strength Subtotal = 23.86 kips


Total Support Side Bolt Shear Strength = min( Angle1 Bolt Shear/Gage1 Ratio , Angle2 Bolt Shear/Gage2 Ratio ) = min (47.71, 47.71) = 47.71 kips


BOLT STRENGTH BEAM SIDE:

At ShearPlane 1(Angle 1):
Bolt Strength:
C = no of bolts = 2.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips


At ShearPlane 2(Angle 2):
Bolt Strength:
C = no of bolts = 2.000
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 2.00 = 23.86 kips


Total Vertical Bolt Shear Strength = 
Min(ShearPlane 1 Shear Load Only / gage1 ratio, 
ShearPlane 2 Shear Load Only / gage2 ratio) = 
Min(23.86 / 0.5, 23.86 / 0.5) = 47.71 kips
Bolt Bearing Calcs:
BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
At ShearPlane 1
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 1.84 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.19/2) * 65.00 = 8.10 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.84 * (0.19/2) * 65.00 = 6.83 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.19/2) * 65.00 = 5.56 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.10, 6.83, 5.56) = 5.56 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 3.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 5.557, 16.339) = 5.56 kips/bolt


At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 4.84 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.19/2) * 65.00 = 8.10 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.84 * (0.19/2) * 65.00 = 17.95 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.19/2) * 65.00 = 5.56 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.10, 17.95, 5.56) = 5.56 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 0.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnbm, 1/omegaRnang1) = min(11.93, 5.557, 6.467) = 5.56 kips/bolt


Bearing Capacity at Shear Plane 1 = Sum{ Bearing At [(Row)i,(Column)i] } = 
5.557 + 5.557 = 11.11 kips

At ShearPlane 2
At Row 1, At Column 1:
Ri2 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 1.84 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.19/2) * 65.00 = 8.10 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.84 * (0.19/2) * 65.00 = 6.83 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.19/2) * 65.00 = 5.56 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.10, 6.83, 5.56) = 5.56 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 3.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 5.557, 16.339) = 5.56 kips/bolt


At Row 2, At Column 1:
Ri2 = 11.93 kips
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 4.84 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.19/2) * 65.00 = 8.10 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.84 * (0.19/2) * 65.00 = 17.95 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.19/2) * 65.00 = 5.56 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(8.10, 17.95, 5.56) = 5.56 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 0.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri2, 1/omegaRnbm, 1/omegaRnang2) = min(11.93, 5.557, 6.467) = 5.56 kips/bolt


Bearing Capacity at Shear Plane 2 = Sum{ Bearing At [(Row)i,(Column)i] } = 
5.557 + 5.557 = 11.11 kips


BEARING AT BEAM SIDE SUMMARY:

Bearing Capacity at Beam and Double Angles at Vertical Shear Load Only, Rbv1 =
Min(Sum{ Bearing At Shear Plane 1  [(Row)i,(Column)i] } / Gage1 Ratio, 
    Sum{ Bearing At Shear Plane 2  [(Row)i,(Column)i] } / Gage2 Ratio ) = Min( 11.11/ 0.50, 11.11/ 0.50 ) = 22.23 kips

BOLT BEARING AT SUPPORT SIDE:
Angle 1, Vertical Shear Loading: 
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 6.46 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.19/1) * 65.00 = 16.21 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 6.46 * (0.19/1) * 65.00 = 47.90 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.19/1) * 65.00 = 11.11 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(16.21, 47.90, 11.11) = 11.11 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 0.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 11.115, 6.467) = 6.47 kips/bolt


At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 3.46 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.19/1) * 65.00 = 16.21 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 3.46 * (0.19/1) * 65.00 = 25.67 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.19/1) * 65.00 = 11.11 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(16.21, 25.67, 11.11) = 11.11 kips/bolt
Lcsang1 at Angle 1 spacing  = 2.19 in.
Lceang1 at Angle 1 edge    = 3.59 in.
1/omegaRnsang1 at Angle 1 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang1 at Angle 1 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang1 on Angle 1 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 1 bearing capacity, 1/omegaRnang1 = min(1/omegaRnsang1,1/omegaRneang1,1/omegaRndang1) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang1) = min(11.93, 11.115, 16.339) = 11.11 kips/bolt


Bearing Capacity at Shear Plane  = Sum{ Bearing At [(Row)i,(Column)i] } = 
6.467 + 11.115 = 17.58 kips


BOLT BEARING AT SUPPORT SIDE:
Angle 2, Vertical Shear Loading: 
At Row 1, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 6.46 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.19/1) * 65.00 = 16.21 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 6.46 * (0.19/1) * 65.00 = 47.90 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.19/1) * 65.00 = 11.11 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(16.21, 47.90, 11.11) = 11.11 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 0.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 0.59 * 0.31 * 58.00 = 6.47 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 6.47, 16.34) = 6.47 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 11.115, 6.467) = 6.47 kips/bolt


At Row 2, At Column 1:
Ri1 = 11.93 kips
Lcssupp at Support spacing  = 2.19 in.
Lcesupp at Support edge    = 3.46 in.
1/omegaRnssupp at Support spacing = 1/omega * hf1 * Lcs * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 2.19 * (0.19/1) * 65.00 = 16.21 kips/bolt
1/omegaRnesupp at Support edge = 1/omega * hf1 * Lce * (twsup/# bolt sides supported) * Fu = 0.50 * 1.20 * 3.46 * (0.19/1) * 65.00 = 25.67 kips/bolt
1/omegaRndsupp on Support at Bolt Diameter   = 1/omega * hf2 * db * (twsup/# bolt sides supported) * Fu = 0.50 * 2.40 * 0.75 * (0.19/1) * 65.00 = 11.11 kips/bolt
Support bearing capacity, 1/omegaRnsupp = min(1/omegaRnssupp,1/omegaRnesupp,1/omegaRndsupp) = min(16.21, 25.67, 11.11) = 11.11 kips/bolt
Lcsang2 at Angle 2 spacing  = 2.19 in.
Lceang2 at Angle 2 edge    = 3.59 in.
1/omegaRnsang2 at Angle 2 spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2.19 * 0.31 * 58.00 = 23.83 kips/bolt
1/omegaRneang2 at Angle 2 edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 3.59 * 0.31 * 58.00 = 39.14 kips/bolt
1/omegaRndang2 on Angle 2 at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.31 * 58.00 = 16.34 kips/bolt
Angle 2 bearing capacity, 1/omegaRnang2 = min(1/omegaRnsang2,1/omegaRneang2,1/omegaRndang2) = min(23.83, 39.14, 16.34) = 16.34 kips/bolt
1/omegaRn = min(Ri1, 1/omegaRnsupp, 1/omegaRnang2) = min(11.93, 11.115, 16.339) = 11.11 kips/bolt


Bearing Capacity at Shear Plane  = Sum{ Bearing At [(Row)i,(Column)i] } = 
6.467 + 11.115 = 17.58 kips


Bearing At Support Side Summary:
Bearing Capacity = min(At Angle1 Shear Only/Gage1 Ratio, At Angle2 Shear Only/Gage2 Ratio) = min(17.58/0.50, 17.58/0.50) = 35.16 kips
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 9.87 - 0.75 - 0.75 = 8.37 in.
Gross Area (Shear) = [Web Depth] * tw = 8.37 * 0.19 = 1.59 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (8.37 - (2 * 0.88)) * 0.19 = 1.26 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 1.59 = 31.81 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 1.26 = 24.53 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block Shear (1)
Gross Shear Length = [edge dist. at beam edge] + ([# rows - 1] * [spacing]) = 2.25 + 3 = 5.25 in.
Net Shear Length = Gross Shear Length - (# rows - 0.5) * (hole size + 0.0625) = 5.25 - (2 - 0.5) * 0.875 = 3.94 in.
Gross Tension Length = [edge dist. at beam edge] + ([# cols - 1] * [spacing]) = 1.75 + (1 - 1) * 3 = 1.75 in.
Net Tension Length = Gross Tension Length - (# cols - 0.5) * (hole size + 0.0625) = 1.75 - (1 - 0.5) * 0.875 = 1.31 in.
1. (1/omega) * [material thickness] * ((0.60 * Fubeam* [net shear length]) + (Ubs * Fubeam * [net tension length])) 
    = 0.50 * 0.19 * ((0.60 * 65.00 * 3.94) + (1.00 * 65.00 * 1.31)) = 22.69 kips
2. (1/omega) * [material thickness] * ((0.60 * Fybeam * [gross shear length]) + (Ubs * Fubeam * [net tension length])) 
    = 0.50 * 0.19 * ((0.60 * 50.00 * 5.25) + (1.00 * 65.00 * 1.31)) = 23.07 kips
Block Shear = 22.69 kips

Block Shear (1) Total = Block Shear (1) = 22.69 kips


Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section)
Eccentricity at Section, e = 2.60 in.
If beam is coped at both top and bottom flanges,

Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.19 in.
ho = 8.37 in.
c = 2.00 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 8.37 * 50.00^0.5 / (10 * 0.19 * (475.00 + 280.00 * (8.37/2.00)^2 )^0.5) = 0.42
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi
Snet1 (bolt holes not applicable) = 2.22 in^3
Snet2 (bolt holes applicable) = 1.96 in^3
Znet = 2.83 in^3

Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 30.00 * 2.22 / 2.60 = 25.65 kips

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 2.22 / 2.60 = 25.65 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 2.83 / 2.60 = 35.43 kips


Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section)
Eccentricity at Section, e = 2.35 in.
If beam is coped at both top and bottom flanges,

Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.19 in.
ho = 8.37 in.
c = 2.00 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 8.37 * 50.00^0.5 / (10 * 0.19 * (475.00 + 280.00 * (8.37/2.00)^2 )^0.5) = 0.42
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 50.00 * 1.00 = 30.00 ksi
Snet1 (bolt holes not applicable) = 2.22 in^3
Snet2 (bolt holes applicable) = 1.96 in^3
Znet = 2.83 in^3

Using Eq. 9-6
Buckling = Fcr * Snet1 / e = 30.00 * 2.22 / 2.35 = 28.38 kips

Using Eq. 9-19
Flexural Yielding = (1/omega) * Fy * Snet1 / e = 0.60 * 50.00 * 2.22 / 2.35 = 28.38 kips

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 65.00 * 2.83 / 2.35 = 39.21 kips


Section Bending Strength Calculations Summary:

   Coped Beam Buckling and Flexure at Longest Cope (Top and Bottom Copes at Section)
   Buckling : 25.65 >= 20.00 kips (OK)
   Flexural Yielding : 25.65 >= 20.00 kips (OK)
   Flexural Rupture : 35.43 >= 20.00 kips (OK)

   Coped Beam Buckling and Flexure at Furthest Bolt Line within Cope (Top and Bottom Copes at Section)
   Buckling : 28.38 >= 20.00 kips (OK)
   Flexural Yielding : 28.38 >= 20.00 kips (OK)
   Flexural Rupture : 39.21 >= 20.00 kips (OK)
Double Angles Bolted Bolted Calcs:
Angle1 

Support Angle Leg 


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (5 - 1) = 4.00 in.
Net Shear Length = 4 - (1.5 * (0.812 + 1/16)) = 2.69 in.
Gross Tension Length = [edge dist.] = 1.84 in.
Net Tension Length = (1.84 - (1 + 1/16)/2) = 1.31 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 1.31)) = 26.56 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 1.31)) = 25.45 kips
Block Shear = 25.45 kips

Gross Area = 0.31 * 5.00 = 1.56 in^2
Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips


Beam Angle Leg 

Gross Area = 0.31 * 5.00 = 1.56 in^2
Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (5 - 1) = 4.00 in.
Net Shear Length = 4 - (1.5 * (0.812 + 1/16) = 2.69 in.
Gross Tension Length = [edge dist.] = 1.25 in.
Net Tension Length = (1.25 - (0.812 + 1/16)/2) = 0.81 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 0.81)) = 22.01 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 0.81)) = 20.90 kips
Block Shear = 20.90 kips



Angle2 

Support Angle Leg 


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (5 - 1) = 4.00 in.
Net Shear Length = 4 - (1.5 * (0.812 + 1/16)) = 2.69 in.
Gross Tension Length = [edge dist.] = 1.84 in.
Net Tension Length = (1.84 - (1 + 1/16)/2) = 1.31 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 1.31)) = 26.56 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 1.31)) = 25.45 kips
Block Shear = 25.45 kips

Gross Area = 0.31 * 5.00 = 1.56 in^2
Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips


Beam Angle Leg 

Gross Area = 0.31 * 5.00 = 1.56 in^2
Net Area = (5.00 - (2 *(0.81 + 1/16)) * 0.31 = 1.02 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fya * [Gross Area] = 0.67 * 0.6 * 36.00 * 1.56 = 22.54 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fua * [Net Area] = 0.50 * 0.6 * 58.00 * 1.02 = 17.70 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (5 - 1) = 4.00 in.
Net Shear Length = 4 - (1.5 * (0.812 + 1/16) = 2.69 in.
Gross Tension Length = [edge dist.] = 1.25 in.
Net Tension Length = (1.25 - (0.812 + 1/16)/2) = 0.81 in.
1. (1/omega) * [material thickness] * ((0.60 * Fua* [net shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 58.00 * 2.69) + (1.00 * 58.00 * 0.81)) = 22.01 kips
2. (1/omega) * [material thickness] * ((0.60 * Fya * [gross shear length]) + (Ubs * Fua * [net tension length])) 
    = 0.50 * 0.31 * ((0.60 * 36.00 * 4.00) + (1.00 * 58.00 * 0.81)) = 20.90 kips
Block Shear = 20.90 kips



Total Support Side Shear Yielding Capacity =  min(YieldAngle1/Gage1 Ratio, YieldAngle2/Gage2 Ratio) =  min(45.072 , 45.072) = 45.072 kips
Total Support Side Shear Rupture Capacity =  min(RuptureAngle1/Gage1 Ratio, RuptureAngle2/Gage2 Ratio) = min(35.4003 , 35.4003) = 35.4003 kips
Total Support Side Vertical Block Shear Capacity =  min(BlockAngle1/Gage1 Ratio, BlockAngle2/Gage2 Ratio) = min(50.893 , 50.893) = 50.893 kips
Total Beam Side Shear Yielding Capacity =  min (YieldAngle1/Gage1 Ratio , YieldAngle2/Gage2 Ratio) = min(45.072 , 45.072) = 45.072 kips
Total Beam Side Shear Rupture Capacity =  min (RuptureAngle1/Gage1 Ratio , RuptureAngle2/Gage2 Ratio) = min(35.4003 , 35.4003) = 35.4003 kips
Total Beam Side Vertical Block Shear Capacity =  min (BlockAngle1/Gage1 Ratio , BlockAngle2/Gage2 Ratio) = min(41.7933 , 41.7933) = 41.7933 kips
Weld Calcs:
(Not applicable / No results )