Qnect Logo

Connection Calcs Report

Company: - Josh Qnect -
Job Title: - Qnect Demo 2000 Tons -
Session Title: Baseline
Session Date: 2018-08-31 18:06:55
Model Name: Josh_Demo_2000_Tons.db1
B+Op Status: B+Op was disabled
Building Code: AISC-14
Design Type: LRFD
Engineering Units: Imperial
Bolt Catalog: ASTM Imperial
Profile Catalog: ASTM Imperial
Plate Material Grade Catalog: ASTM Imperial
Plate Thickness Catalog: Imperial
Detailing Distances Dimensions: Imperial
Materials:
Weld Shear Plate Angle Bm Web Doubler Plate Stabilizer Plate End Plate Col Moment Plate Col Stiffener Plate Col Web Doubler Plate
E70 A572-GR.50 A36 A572-GR.50 A572-GR.50 A572-GR.50 A572-GR.50 A572-GR.50 A572-GR.50

Summary Reports: Job Standard Summary  |  Job Sample Calcs Report  |  B+Op Comparison Report
Job Preferences Report  |  No Connections Summary  |  No Connections Detailed  |  No Connections Reference Map
 
Shear Plate Reports: Specs  Strengths (Shear Only Connections)  Strengths (Shear & Axial Connections)  Welds  Doublers
Single Angle Reports:  Specs  Strengths (Shear & Axial)  Welds  Doublers
Double Angle Reports:  Support Side Specs  Beam Side Specs  Strengths (Shear & Axial)  Welds  Doublers
Moment Reports:  Specs  Support Strengths  Support Reinforcement Strengths  Moment Plate Strengths  Welds
Moment Group Reports:  Doubler Plate Specs  Doubler Plate Welds  Stiffener / Moment Plate Specs  Stiffener / Moment Plate Welds

Connection Number:
bcw.s.s.00045.00462
 
Main Calcs:
SHEAR PLATE CONNECTION SUMMARY

Filler Beam profile: W18X35
Column profile: W14X211
Slope: 0 deg.
Skew: 84.9
Vertical Offset: 0
Horizontal Offset: 0
Span: 35.9 ft.
Reaction, V: 23 kips
Shear Capacity, Rn: 24.4 kips
Design/Reference according to AISC 14th Ed. - ASD
Shear Plate: Extended Configuration
Beam material grade: A992
Support material grade: A992
Plate material grade: A36
Weld grade: E70
Shear Plate Size: 14.250 in. x 11.500 in. x 0.500 in.
Configuration Geometry:
Welds at shear plate to support: 5/16 FILLET, 6/16 FILLET
Bolt: 4 rows x 2 columns 0.75 in. Diameter A325N_TC bolts
Vertical spacing: 3 in.
Horizontal spacing: 3 in.
Shear plate edge setback = 8.12 in.
Beam centerline setback = 8.18 in.
Edge distance at vertical edge of plate: 1.5 in.
Edge distance at top edge of plate: 1.25 in.
Edge distance at bottom edge of plate: 1.25 in.
Edge distance at vertical edge of beam: 1.62 in.
Horizontal distance to first hole: 9.75 in.
Down distance from top of filler beam flange: 3 in.
Holes in beam web: STD diameter = 0.812 in.
Holes in shear plate: SSL diameter = 0.812 in., slot width = 1 in.
Bolt Strength Calcs:
BOLT STRENGTH BEAM SIDE:

Bolt Strength:
Using Instantaneous Center Of Rotation Method (AISC 7-1)
ex = 11.272 in.
Angle = 0.000 deg.
C = 2.175
Using Table 7-1 to determine (1/omega) * rn:
Rn = (1/omega) * rn * C = 11.93 * 2.17 = 25.94 kips
Bolt Bearing Calcs:
BOLT BEARING AT BEAM SIDE:
Vertical Shear Only Load Case:
ICR cordinate relative to CG = (1.19, 0.00)
At Row 1, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam   = <10.05, 6.01>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 5.44 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.30/1) * 65.00 = 36.45 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 5.44 * (0.30/1) * 65.00 = 63.63 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.30/1) * 65.00 = 17.55 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(36.45, 63.63, 17.55) = 17.55 kips/bolt
Ri vector at Shear Plate   = <-10.05, -6.01>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 10.78 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.50 * 58.00 = 53.07 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 10.78 * 0.50 * 58.00 = 187.54 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(53.07, 187.54, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(17.550, 26.100) = 17.55 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.55 / 11.71 = 1.50

At Row 1, At Column 2:
Ri1 = 11.57 kips
Ri vector at Beam   = <11.54, -0.79>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 214.48 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.30/1) * 65.00 = 25.59 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 214.48 * (0.30/1) * 65.00 = 2509.37 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.30/1) * 65.00 = 17.55 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(25.59, 2509.37, 17.55) = 17.55 kips/bolt
Ri vector at Shear Plate   = <-11.54, 0.79>
Lcsshpl at Shear Plate spacing  = 2.00 in.
Lceshpl at Shear Plate edge    = 12.28 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2 * 0.50 * 58.00 = 34.80 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.28 * 0.50 * 58.00 = 213.65 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(34.80, 213.65, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(17.550, 26.100) = 17.55 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.55 / 11.57 = 1.52

At Row 2, At Column 1:
Ri1 = 11.01 kips
Ri vector at Beam   = <5.36, 9.62>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 6.46 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.30/1) * 65.00 = 36.45 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 6.46 * (0.30/1) * 65.00 = 75.61 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.30/1) * 65.00 = 17.55 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(36.45, 75.61, 17.55) = 17.55 kips/bolt
Ri vector at Shear Plate   = <-5.36, -9.62>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 7.83 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.50 * 58.00 = 53.07 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 7.83 * 0.50 * 58.00 = 136.33 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(53.07, 136.33, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(17.550, 26.100) = 17.55 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.55 / 11.01 = 1.59

At Row 2, At Column 2:
Ri1 = 9.25 kips
Ri vector at Beam   = <9.06, -1.86>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 57.66 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.30/1) * 65.00 = 25.59 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 57.66 * (0.30/1) * 65.00 = 674.63 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.30/1) * 65.00 = 17.55 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(25.59, 674.63, 17.55) = 17.55 kips/bolt
Ri vector at Shear Plate   = <-9.06, 1.86>
Lcsshpl at Shear Plate spacing  = 2.00 in.
Lceshpl at Shear Plate edge    = 12.51 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2 * 0.50 * 58.00 = 34.80 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 12.51 * 0.50 * 58.00 = 217.61 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(34.80, 217.61, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(17.550, 26.100) = 17.55 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.55 / 9.25 = 1.90

At Row 3, At Column 1:
Ri1 = 11.01 kips
Ri vector at Beam   = <-5.36, 9.62>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 2.93 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.30/1) * 65.00 = 36.45 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.93 * (0.30/1) * 65.00 = 34.30 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.30/1) * 65.00 = 17.55 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(36.45, 34.30, 17.55) = 17.55 kips/bolt
Ri vector at Shear Plate   = <5.36, -9.62>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 4.40 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.50 * 58.00 = 53.07 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 4.40 * 0.50 * 58.00 = 76.57 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(53.07, 76.57, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(17.550, 26.100) = 17.55 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.55 / 11.01 = 1.59

At Row 3, At Column 2:
Ri1 = 9.25 kips
Ri vector at Beam   = <-9.06, -1.86>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 4.32 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.30/1) * 65.00 = 25.59 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.32 * (0.30/1) * 65.00 = 50.49 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.30/1) * 65.00 = 17.55 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(25.59, 50.49, 17.55) = 17.55 kips/bolt
Ri vector at Shear Plate   = <9.06, 1.86>
Lcsshpl at Shear Plate spacing  = 2.00 in.
Lceshpl at Shear Plate edge    = 1.02 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2 * 0.50 * 58.00 = 34.80 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.02 * 0.50 * 58.00 = 17.76 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(34.80, 17.76, 26.10) = 17.76 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(17.550, 17.764) = 17.55 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.55 / 9.25 = 1.90

At Row 4, At Column 1:
Ri1 = 11.71 kips
Ri vector at Beam   = <-10.05, 6.01>
Lcsbm at Beam spacing  = 3.12 in.
Lcebm at Beam edge    = 1.49 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 3.12 * (0.30/1) * 65.00 = 36.45 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 1.49 * (0.30/1) * 65.00 = 17.40 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.30/1) * 65.00 = 17.55 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(36.45, 17.40, 17.55) = 17.40 kips/bolt
Ri vector at Shear Plate   = <10.05, -6.01>
Lcsshpl at Shear Plate spacing  = 3.05 in.
Lceshpl at Shear Plate edge    = 1.85 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 3.05 * 0.50 * 58.00 = 53.07 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.85 * 0.50 * 58.00 = 32.24 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(53.07, 32.24, 26.10) = 26.10 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(17.400, 26.100) = 17.40 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.40 / 11.71 = 1.49

At Row 4, At Column 2:
Ri1 = 11.57 kips
Ri vector at Beam   = <-11.54, -0.79>
Lcsbm at Beam spacing  = 2.19 in.
Lcebm at Beam edge    = 4.23 in.
1/omegaRnsbm at Beam spacing = 1/omega * hf1 * Lcs * (tw/# shear planes) * Fu = 0.50 * 1.20 * 2.19 * (0.30/1) * 65.00 = 25.59 kips/bolt
1/omegaRnebm at Beam edge = 1/omega * hf1 * Lce * (tw/# shear planes) * Fu = 0.50 * 1.20 * 4.23 * (0.30/1) * 65.00 = 49.49 kips/bolt
1/omegaRndbm on Beam at Bolt Diameter   = 1/omega * hf2 * db * (tw/# shear planes) * Fu = 0.50 * 2.40 * 0.75 * (0.30/1) * 65.00 = 17.55 kips/bolt
Beam bearing capacity, 1/omegaRnbm = min(1/omegaRnsbm,1/omegaRnebm,1/omegaRndbm) = min(25.59, 49.49, 17.55) = 17.55 kips/bolt
Ri vector at Shear Plate   = <11.54, 0.79>
Lcsshpl at Shear Plate spacing  = 2.00 in.
Lceshpl at Shear Plate edge    = 1.00 in.
1/omegaRnsshpl at Shear Plate spacing = 1/omega * hf1 * Lcs * t * Fu = 0.50 * 1.20 * 2 * 0.50 * 58.00 = 34.80 kips/bolt
1/omegaRneshpl at Shear Plate edge = 1/omega * hf1 * Lce * t * Fu = 0.50 * 1.20 * 1.00 * 0.50 * 58.00 = 17.44 kips/bolt
1/omegaRndshpl on Shear Plate at Bolt Diameter   = 1/omega * hf2 * db * t * Fu = 0.50 * 2.40 * 0.75 * 0.50 * 58.00 = 26.10 kips/bolt
Shear Plate bearing capacity, 1/omegaRnshpl = min(1/omegaRnsshpl,1/omegaRneshpl,1/omegaRndshpl) = min(34.80, 17.44, 26.10) = 17.44 kips/bolt
1/omegaRn = min(1/omegaRnbm, 1/omegaRnshpl) = min(17.550, 17.441) = 17.44 kips/bolt
Bolt Shear Demand to Bearing ratio = 17.44 / 11.57 = 1.51

Min Bolt Shear Demand to Bearing ratio for vertical shear only = min(1.0, 1.49902, 1.51663, 1.59409, 1.89775, 1.59409, 1.89775, 1.48625, 1.5072) = 1.00


Bearing Capacity at Beam and Shear Plate at Vertical Shear Load Only, Rbv1 = Min Bolt Shear Demand to Bearing Ratio * Bolt Shear = 1.00 * 25.94 = 25.94 kips
Beam Strength Calcs:
Web Depth = d - [Top Cope Depth] - [Bottom Cope Depth] = 17.7 - 0 - 0 = 17.7 in.
Gross Area (Shear) = [Web Depth] * tw = 17.70 * 0.30 = 5.31 in^2
Net Shear Area (Shear) = ([Web Depth] - ([# rows] * [Diameter + 0.0625])) * tw 
    = (17.70 - (4 * 0.88)) * 0.30 = 4.26 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fybeam * [Gross Area] = 0.67 * 0.6 * 50.00 * 5.31 = 106.20 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fubeam * [Net Area] = 0.50 * 0.6 * 65.00 * 4.26 = 83.07 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}

Block Shear not required.
Shear Plate Calcs:
Gross Area = 0.50 * 11.50 = 5.75 in^2
Net Area = (11.50 - (4 *(0.81 + 1/16))) * 0.50 = 4.00 in^2

Using Eq.J4-3:
Shear Yielding = (1/omega) * 0.6 * Fypl * [Gross Area] = 0.67 * 0.6 * 36.00 * 5.75 = 82.80 kips

Using Eq.J4-4:
Shear Rupture = (1/omega) * 0.6 * Fupl * [Net Area] = 0.50 * 0.6 * 58.00 * 4.00 = 69.60 kips


Block Shear

Using Eq.J4-5:
Block Shear = {(1/omega) * ((0.6 * Fu * Anv) + (Ubs * Fu * Ant))} <= {(1/omega) * ((0.6 * Fy * Agv) + (Ubs * Fu * Ant))}
Block 1 (Shear): 
Gross Shear Length = (11.5 - 1.25) = 10.25 in.
Net Shear Length = 10.2 - (3.5 * (0.812 + 0.0625)) = 7.19 in.
Gross Tension Length = (3 + 1.5) = 4.50 in.
Net Tension Length = 4.5 - (1.5 * (1 + 0.0625)) = 2.91 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.50 * ((0.60 * 58.00 * 7.19) + (0.50 * 58.00 * 2.91)) = 83.60 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.50 * ((0.60 * 36.00 * 10.25) + (0.50 * 58.00 * 2.91)) = 76.42 kips
Block Shear = 76.42 kips

Block 2 (Shear): 
Gross Shear Length = 2 * (11.5 - 1.25) = 20.50 in.
Net Shear Length = 2 * ( 10.2 - (3.5 * (0.812 + 0.0625)) ) = 14.38 in.
Gross Tension Length = (3 + 1.5) - 1.5 = 3.00 in.
Net Tension Length = 3 - 1 * (1 + 0.0625) = 1.94 in.
1. (1/omega) * [material thickness] * ((0.60 * Fupl* [net shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.50 * ((0.60 * 58.00 * 14.38) + (0.50 * 58.00 * 1.94)) = 139.11 kips
2. (1/omega) * [material thickness] * ((0.60 * Fypl * [gross shear length]) + (Ubs * Fupl * [net tension length])) 
    = 0.50 * 0.50 * ((0.60 * 36.00 * 20.50) + (0.50 * 58.00 * 1.94)) = 124.75 kips
Block Shear = 124.75 kips

Flexural and Buckling Strength:

Eccentricity at first line of bolts, e = 9.77 in.
Zgross = 16.53 in^3
Znet   = 11.28 in^3
Sgross = 11.02 in^3
Snet   = 7.60 in^3

Using Eq. 9-4
Flexural Rupture = (1/omega) * Fu * Znet / e = 0.50 * 58.00 * 11.28 / 9.77 = 33.48 kips


Using Eq. 9-14 through 9-18, Fcr = Fy * Q
tw = 0.50 in.
ho = 11.50 in.
c = 9.77 in.
lambda = (ho * Fy ^ 0.5) / ( 10 * tw * ( 475.00 + 280.00 * (ho / c)^2 ) ^0.5 ) = 
 = 11.50 * 36.00^0.5 / (10 * 0.50 * (475.00 + 280.00 * (11.50/9.77)^2 )^0.5) = 0.47
When lambda <= 0.70, Q=1
Q = 1.00
Fcrmin =1/omega * Fcr = 0.60 * 36.00 * 1.00 = 21.60 ksi

Using Eq. 9-6
Buckling = Fcr * Sgross / e = 21.60 * 11.02 / 9.77 = 24.36 kips

Interaction Check of Flexural Yielding, Per AISC 10-5: 
Eccentricity at CG of Bolt Group, e = 11.27 in.
Zgross = 16.53
Znet = 16.53
Mr = Vr * e = 23.00 * 11.27 = 259.26 kips-in
Mc = 1/omega * Mn = 1/omega * Fy * Zgross = 0.60 * 36.00 * 16.53 = 357.07 kips-in
Vr = 23.00 kips
Vc = 1/omega * Vn = 1/omega * 0.60 * Fy * Ag = 0.67 * 0.60 * 36.00 * 5.75 = 82.80 kips
Interaction due to moment and shear, (Vr/Vc)^2 + (Mr/Mc)^2 <= 1.0
(Vr/Vc)^2 + (Mr/Mc)^2 = (23.00 / 82.80)^2 + (259.26 / 357.07)^2 = 0.60 <= 1  (OK)

Note: Mn <= 1.6My by inspection

MAXIMUM PLATE THICKNESS:
tmax = 6 * Mmax / (Fypl * d^2) Eq. 10-3
Mmax = (1/0.9) * Fv * Ab * C' Eq. 10-4
Mmax = (1/0.9) * 54 * 0.441786 * 26.0315 = 690.023 kips-in
tmax = 6 * 690.023 / (36 * 11.5^2) = 0.87 in.
Maximum Plate Thickness is Not a Limiting Criteria.

STABILIZER PLATE:

Available Strength to Resist Lateral Displacement:
Using Eq. 10-6 (14th Ed.):
Rn/omega = 1500.00  * 3.14159 * L * tp^3 / a^2 = 0.60 * 1500.00 * 3.14159 * 11.50 * 0.50^3 / 9.75^2 = 42.76 kips
Stabilizer Plate Not Required for lateral displacement

Torsional Strength:
Using Eq. 10-8 and Eq. 10-7 (14th Ed.):
Required, Mta or Mtu = Ra * (tw + tp) /2 = 23.00 * ((0.31 + 0.50) / 2) = 9.34 kips-in
Lateral Shear Strength of Shear Plate, Mtn (no slab) = [1/omega*(0.6*Fyp)-(Ra/(L*tp))] *L*tp^2/2 =  ((0.67 * 0.6 * 36.00) - (23.00 / (11.50 * 0.50))) * 0.5 * 11.50 * 0.50^2 = 14.95 kips-in
Stabilizer Plate Not Required for torsional strength
Weld Calcs:
WELD:

 Weld Requirements:

At shear only case: 
Weld Length for shear, Lv = 11.500 in.
Shear Load per inch per weld, fv = R/Lv/2 = 23.000 / 11.500 / 2 = 1.000 kips/in/ weld 
theta = 0 deg.
cPhi  = 1.0 + 0.5 * sin(0)^1.5 = 1.000
Weld Coefficient = 0.6 * 70.000 * 1.000 * 1.000 * (2^0.5/2)*(1/16) = 1.856
Required weld size, Dv = fv/ (1/omega * coeff) = 1.000 / (0.500 * 1.856) = 1.077/16

Minimum fillet weld size : 
   At shear only load case = 0.07 in.
   per Table J2.4     = 0.19 in.
   5/8(tp)            = 0.31 in.
   user preference    = 0.25 in.

Dmax1 (using eqn 9-3)
 = tshpl * Fushpl / ( Fexx * C1 * 0.088)
 = 0.500 * 58.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 4.687 
Dmax2 (using eqn 9-3)
 = twsupport * Fusupport / ( Fexx * C1 * 0.088 )
 = 0.980 * 65.000 / ( 70.000 * 1.000 * 0.088 ) 
 = 10.295 
Dmax3 = project max fillet weld = 12.000
Dmax=min(Dmax1, Dmax2, Dmax3) = min(4.687, 10.295, 12.000)
 = 4.687 

Dihedral Angle, DA       = 84.90 deg.
Gap on Obtuse Angle Side = 0.04 in.
Use weld size
Acute Side  D1 = 5.00
Obtuse Side D2 = 6.00

Weld Strength :
Vertical weld capacity during shear only load, 1/omega * Rnv1 = 0.50 * 1.86 * 11.50 * (4.69 + 4.69) = 100.05 kips
Check Effective Throat:
Acute Side Effect throat  = (D1/sin(DA)) * cos(DA/2) = (0.31/ sin( 84.90)) * cos( 42.45) = 0.23 in.
Obtuse Side Effect throat = ((D2/sin(DA)-tshpl/tan(DA))*sin((180-(180-DA))/2))= ((0.38 / sin(84.90) -0.50 / tan(84.90)) * sin((180 - (180 - 84.90)) / 2)) = 0.18 in.
Total Effective Throat    = 0.23 + 0.18 = 0.46 in.
Total Effective Throat of Square Case = D1 * 2^0.5 = 0.31 * 2^0.5 = 0.44 in.
0.44 in. <= 0.46 in. (OK)